

EC\&GMWoodward del.et lith.

IX atLId 868LS Z d

Mocene \& recent Sciuridz

1. On some Miocene Squirrels, with Remarks on the Dentition and Classification of the Sciurine. By Dr. C. J. Forsyth Major, C.M.Z.S.

[Receired February 1t, 1899.]
(Plates VIII,-X1.)
I. Introduction, p. 179.
II. On the Dentition of the Sciurince, p. 179.
III. Rewarks on the Classification of the Sciuridar, p. 186.
IV. Description of the Fossil Species, p. 190.
V. On the primitive Type of the Sciurine Molar, and of the Eutherian Molar in general, p. 196.
VI. Explanation of the Plates, p. 214.

I. Intioduction.

In order to determine some remains of squirrels, collected by myself in the Middle-Miocene deposits of La Grive-Saint-Alban (Iscre), it was necessary to compare them with their actual congeners. I have to thank both Dr. A. Giinther and Mr. Oldfield Thomas for the kinduess shown to me in permitting a close examiuation of the rich collection of Sciurine skulls in the Zoological Department of the British Museum ; and I am besides under great obligations to Mr. Thomas, who is so thoroughly acquainted not ouly with every species, but indeed with every specimen of the collection under his charge, for having liberally faroured me with his experience and advice, especially in regard to intricate questions of synonymy and specific determination.
The investigation of living forms has led me somewhat farther than I had anticipated : so that before treating of the few fossil remains, it will be necessary to pass in review the numerous, and, in several instances, very unexpected forms of Sciurine dentition, as well as to present some remarks on their classification.

The brachydont teeth of Sciurince presenting a very primitive type of Rodent molars, 1 was naturally led to consider them in the light of the prevailing theory, the so-called tritubercularitr, the rodent molars having been traced, as those of other orders, to a trituberculate type. This forms the subject of the last part of my communication.

11. On the Dentition of the Scimine.

It is a well-known fact that in various faunilies of the Rodentia tubercular molars-which as a rule are brachydont-and laminated molars-which as a rule are hypsodont or rootless-are met with side by side in closely allied genera and in existing species, whilst in some other Orders we have to look among fossils for the more or less brachydont precursors of the living hypsodont forms.

It is equally well known, though not always called to mind,
that the laminated hypsodont molars generally begin tubercular, and the tubercular brachydont molars, when worn, become limmated. For instance: the unworn upper and lower molars of Castor fiber show us a somewhat tuberculate crown, in which at first sight it is not easy to recognize the well-known laminated pattern of the worn tooth of the Beaver : likewise, a muchworn molar of the brathydont ('riceters presents enamel-folds and islets, though, owing to the shallower and wider valleys, they appear less distinct than in the hypsodont molars, whose valleys are reduced to narrow but deep fissures; so that there is only a gradational difference between tubercular and laminated teeth.

The molar teeth of Sciuridæ are generally represented as tubercular. But, in surveying all the known forms, even restricting ourselves to the subfianily Sciurince, we meet with all possible intermediate stages between the decidedly hypsodont molars of Eupetaurus described by Thomas ${ }^{1}$ and the utmost degree of brachydontism as shown by the molars of the Bornean Rhithrosciurus or the Myoxine-like teeth of the group of pigmy Squirrels.

First, as to Brachydontism and Hypsodontism.
The species of Pteromys, in a restricted sense, are on their way to become hypsodont ; they lead over on the one side to Eupetaurus, and on the other to the more or less brachydont Sciuropteri (including Pteromys tephromelas, Günth., and P.phreomelas, Giinth., whose molars are quite similar to each other and agree more with the Sciuropteri than with Pteromys).

The African Ground-Squirrels (Xerus), as well as the Oriental Sciurus berlmorei, Bly., present a curions form of semi-hypsodontism, inasmuch as the internal moiety of the upper and more or less the external moiety of the lower molars are more elevated vertically than the external moiety above and the internal below. Corresponding to the hypsodont part of the molar, we find on the inner side of superior molars a stout and elongate root, on the outer side two smaller and shorter roots.

A small group of Ethiopian Squirels included in the genus Sciwus (Sc. palliatus, cepapi, pyrropus, conficus, \&c.) present a similar semi-hypsodonty, whilst the Moroccan Xevus getulus is in a lesser degree semi-hypsodont.

This greater rertical eleration of the imer side of the crown in superior, and of the outer side in inferior molars, though more evident in semi-hypsodont teeth, is, howerer, by no means limited to them; we meet with it, although in a lesser degree, in Scinve rulyaris and its allies, and even in the still more brachydont Rhithrosciurus. Ormithorkynchus itself, as shown by one of the figures published by Stewart ${ }^{2}$, has the inner side of the superior teeth more elongate than the outer. This cir-

[^0]cumstance is of no small importance, as I shall have to point out later on.

The Common Squirrel, and many Oriental members of the genns, as well as some Eihiopian Squirrels (Sc. irufobruchutus, Waterh., anmulatus, Desm., shicusis, (Gray, muntatus, Temm.), show relatively prominent cusps, and present a transitional stage between semi-hypsodontism and brachydontism. Still more brachydont are two other groups which have little affinity with each other--the African Sc. stangeri, Waterh., Sc. chii, Temm., Sc. autimmii, Gr., and the Oriental Giant Squirrels (Sc. Dicolor, indicus, macrurus, de.).

The Oriental Pigmy Squirrels (Sc. eivitis, Müll., Sc. melanotis, Miill. \& Schl., Sc. concimmes, Thos. (Plate X. fig. 10, Plate XI. fig. 7), S'c. ukitelcull, Thos.), as well as the piginy Ethiopian Sc. minutus, Du Chaillu (Plate XI. fig. 6), show a low, oval-shaped and nearly horizontal crown, slightly concare in the middle, with transrerse ridges. On the whole, their dentition has scarcely anything to do with the Scinromorphous type of molars, and can only be compared with that of the Myoxidæ, Eliomys and Girophiums.

Next we hare to consider the pattern of the molars in Sciurince. The numerous modifications-almost every species presents some peculiarity-may be arranged under three heads:-

1. The first type is represented by the most brachydont forms: some Eocene Squirrels, as Sc. spectubitis, Maj., from Egerkingen, the Bornean Rhithoosciurus (Plate IX. fig. : -), the Oriental Giant Squirrels (Plates TlII. and IX. fig. 1), the Ethiopian Sc. stangeri (Plate VIII. fig. 7, Plate IX. fig. 7) and its allies, Sc. ebii and Se. redimmii (Plates YIII. and LX. fig. 8).
2. The second type is represented by Sc. vetucuris and its ally Sic. syritcus (I have had no opportunity of examining the dentition of the Japanese Sc. lis), by most of the Oriental middle-sized Squirrels (Sc. prerosti (Plate TIII. fig. 2), Sc. loheroides (Plates VIII. and LX. fig. 3), \&e.), by a small Ethiopian group (Sc. shirensis, S'c. anmilatus, Sce. punctatus, Sc. mufolnrachiatus), and by most of the American Squirrels.
3. The third type is represented by several groups of Ethiopian Squirrels: Terus (Plates VIIT. and LX. fig. 10), including the Moroccan K.getulus (Plates TLII. and IX. fig. 9), by Sc. cepapi (Plate T111. fig. 22, Plate 1X. fig. 2:3), Sc. palliatus, Sc. pyrropus (Plate VIII. figs. 15, 23, Plate 1 X . figs. 15, 24), Sc. conficus, Se. lemmisctus, S'e. isabella (Plates TIII. and 1X. fig. 2t), Sc. lonehmii; as well as by some Oriental forms, Sc. hertmorei (Plates VIlI. and 1X. figs. 16-18), Gray's genus Rlunosciurus (Plates VIII. and TX. figs. 11, 12), de.

I do not consider for the present the African and Oriental Pigmy Squirels, as the characters of their dentition depart entirely from the sicimomorphan type as a whole.

Brachydontism in itself is quite generally admitted to be the most generalized coudition, and the teeth point in the same direretion ats do those of other Orders, viz., towards a still more primitive type. Besides, we are able to show that the two other
types before mentioned-the Sciumus vulyaris and the Terms types, as we may call them-are each of them derived from a brachydont type.

1. Therefore, begimning with the type of the most brachydont Sciurine molar, as being the most generalized, the various forms belonging to it have a very flat elongate crown, the inner and outer sides of which have an almost equal longitudiual extension; and a minimum of transverse arrangement of their cusps, which show a tendency towards a longitudinal disposition.
2. In the upper molars of the Sc.-rulyaris-type a transverse arrangement is already conspicuous. The ensps have partly mited to form transverse ridges, so that we see here the begimning of a transition from bunodontism into lophodontism: four more or less transverse ridges, the two median being the stoutest, with three intervening valleys. On the outer side are three prominent cusps, corresponding to the three anterior ridges. A characteristic feature on the inner side of the upper molars is an apparently single cusp, which fits into the cup- or basin-shaped hollow of the inferior molar, somewhat like a pestle in a mortar. In examining, however, quite unworn teeth (of Sc. mulyuris, e. g.), the inner side of the upper molar presents itself more elongate and shows a tripartite division, the median cnsp being the stoutest. Still more is this seen in the upper molars of most of the middle-sized Oriental squirrels, which in other characters (of the skull \&cc.) as well as in the dentition approach Sc. rulyaris. The molars, howerer, are somewhat stonter, and the cnsps and ridges more prominent. In unworn teeth of Oriental forms, e.g. of Sc. prevosti (Plate VIIII. fig. 2) or Sc. lokwoides (Plate YIII. fig. 3), the imer margin is rather elongate, and shows more distinctly than does Sc. mlyaris the tripartite division with a prominent medial cnisp. When the teeth have become somewhat worn, these divisions tend to disappear; so that the usual aspect of worn upper teeth in these Oriental Squirrels is that presented by the somewhat worn teeth of S^{\prime}. mulyaris, viz., a single broad internal cusp. The shortening, or, as one might say, the reduction and simplification of the inner side of the upper molars compared to the onter side (and, as may be added, of the outer side of inferior molars compared to their inner side) appears to be a general and primitive tendency of molar teeth; in fact, we meet with it already among Cretaceous Mammalia, as well as in the recent Ornithorhynchus. As to its meaning, we shall have to consider it afterwards.

In lower molars of the Sciurus-vulyaris-type, two cusps, the antero-external and the antero-internal, show a tendency to unite transversely. Anteriorly to these we have a small transverse ralley, bordered in front by a transerse ridge, which is more rarely (Scc. pulmarum) raised in two cusps. In the premolar there is generally one cusp only in front.

The hinder part of inferior molars is shaped into a sort of cup, to receive, as above mentioned, the intermal tubercle of the upper
molars. This is a common form of inferior sciuromorph molar, as we meet with it, not only amongst most of the species of Sciurus, but as well in Tamice, Spermophilus, and Arctomys. The cup is bordered by the two anterior cusps, by two posterior cusps, of which the internal is generally less developed or suppressed, by a posterior heel, and sometimes by two secondary cusps between the two pairs of principal cusps. Sometimes the basin-shaped appearance becomes more evident still by the coalescing of all these cnsps, so that already in quite unwom teeth, $e . \%$ of the interesting Sc. everetti, Thomas (Plate IX. fig. +), the romed margin of the basin appears perfectly even.

In the Sciurus-melyaris-type, the upper molars also present a sort of basin, in order to receive the postero-external cusp of the lower molars. This is the median valley, closed internally by the largely developed internal cusp, and whose formation appears to be due to the partial atrophy of a transverse series of cusps, there having remained only the internal one greatly developed, and often, as in Sc. vulyaris, a very small median cusp on the outer side. In the Yerus-type, to be mentioned hereafter, we frequently have the space of this median valley occupied by a transverse ridge, which brings np to five the number of these transserse ridges in the upper molars, with, between them, four narrow transverse depressions instead of three, as is generally the case.

The Sciuropteri come near to the same type, presenting on the whole a transitional stage between bunodontism and lophodontism, with the cup-like shape of lower molars, to which corresponds the formation of a median valley in the upper molars. In these last we find, moreover, the anterior valley of the crown more fully developed, than is the case in the members of the Sciurus-nulyeristype, and thus the molars of Sciuropteri often present a more elongate form. A characteristic feature of Scimopterine molars is a delicate wrinkling of the enanel of the valleys, and this, according to the different species, extends more or less to the cusps or crests, which thus appear crenate.

Lower basin-shaped molars are met with as far back as the Cernaysian fauna of Reims, the lowest known Eocene deposit in Europe '. This is one of the reasons which makes me agree with Schlosser ${ }^{2}$ in considering the fossils (Plesialupis and Protondapis), described as Lemurids, to be Rodentia. The same conclusions, and for the same reason, apply to Plesiesthon!ta from the "Fanne Ageienne" of Reims ${ }^{3}$, and to some specimens from the Eocene of Egerkingen, doubtfully referred by Riitimeycr to Plesialapis ${ }^{4}$.

[^1]3. To the Xerus-type belong most of the semi-hypsodont Sciurine teeth of the groups already mentioned. It is distinguished from the Sciurus-rulgaris-type by a more complete lophodontism, the crests rmming in a transverse direction, and the valleys being reduced to narrow but deep fissures. The main difference from Ungulate lophodont molars consists in their having not two, but fomr or eren five crests, the anterior and posterior margin of the molar being as much or almost as mnch raised as the two medial crests. So that the Xerus-type presents in upper as well as in lower molars three tramsverse depressions or fissmrelike valleys (and four in superior molars where there are five crests). This type forms on the whole a very striking approach to the hystricomorphan molar.

Twenty years ago I pointed unt that two African Squirrels, Sc. congicus and Sce lencostigme (this last being now considered as a variety of Sc. fmriopus), approach the Hystricomorpha in a further development of the characters in which the Ethiopian Sems departs from the Scincus-velyaris-type. Again, the Eocene Seiuroides was shown to resemble in its molars those of the Hystricomorpha C'ercolalies and Erethizon, whilst, on the other hand, the Eocene hystricomorphan Trechom!/s was shown to approach Sciuroides ${ }^{1}$.

Twelve years later, Schlosser, working on fossil forms, with much richer matcrial at his command, confirmed these observations, showing that a group of Tertiary Rodentia showed characters intermediate between the Scimomorpha and Mystricomorpha ${ }^{2}$.

It is of no little interest that actually living Sciuromorpha show in their dentition, as well as in the characters of their skull, that the distinction between Sciuromorpha and Hystricomorpha is less sharp than is generally admitted. Schlosser seems not to have examined any recent Ethiopian Squirrels, as he does not mention the important characters they present. Nor has any other author, with the exception of Alph. Milne-Edwards, who incidentally mentions Sciurus p!yropus, F. Cur., saying that "les molaires offrent me apparence toute particulicere, due il l'existence de replis d'émail qui s'eufoncent profondément dans la dentine, constituant ainsi de véritables rubans. Je ne connais que cette espece sur laquelle on observe ces particularités ; cependant, chez certains Yerus, on en voit des indications ${ }^{*}{ }^{3}$.

The fact is that the majority of Ethiopian Squirrels depart from the Sciurine type both in their superior and inferior molars, approaching towards hystricine lophodontr by the uniting of their cusps in a transverse direction. so that the characteristic enp-like

[^2]shape of inferior molars tends to disappear. The species which present in a greater or lesser degree this conformation are, besides Tous (Plates VIII. and IX. fig. 10), including I. getulus, Gesn. (Plates TllI. and IN. fig. 9), Sc. pallicatus, Pet., Sc. cepapi, Smith (Plate TII. fig. 22 , Plate [X. fig. 23), Sc. phropus, F. Cur. (Plate VIII. figs. 15, 23, Plate IX. figs. 15, 22), Śc. conuiexs, Knhl, S'c. Temmiseatus, La Conte, Sc. iscruplla, Gr. (Plates TIII. and TX. fig. 24), and S'c. bochmi, Reich. At the same time they present in their skull some resemblance to the Hystricomorpha. They also approach Anomalums (Plates Vlll. and 1N. figs. 13, 14), the rarious hystricomorphine characters of which have long ago been noted, but have, I think, rather been underrated by Alston ${ }^{1}$.

It thus would appear that we have here a group of Sciuromorpha, somewhat specialized in the direction of Hystricomorpha, as we find, too, in sereral Eocene Rodentia.

But this is not all. The molars of Sc. berdmorei, Bly. (Plates VIIL. and IX. figs. 16-18), an Oriental Squirrel, and those of the Bornean "Rhinoscimms, Gr." (Plates TIII. and TX. figs. 11, 12), agree with those of Yeris and the above-named Ethiopian Squirrels, not only in their semi-hepsodontism, but likewise in their lophodontism, whilst the less somi-hypsodont Oriental Sc. tristriatus, Waterh., and Sc. palmarm, I., tend to connect the Yerus-type with the Sc--velyaris-type, in approaching the form of molar of most of the "middle-sized" Oriental Squirrels. Two other Oriental species, Sc. insigmis, F. C'uv. (Plates VILI. and LX. fig. 6), and Sc. hosei, Thos. ${ }^{2}$ (Plates VIII. and IX. fig. 5), from Borneo, though semi-hypsodont, and in other characters agreeing with the members of the Serus-group, show a remarkable modification in the pattern of the molars, the valleys being reduced to mere superficial cracks. which disappear very early by wear. I think that we have in the molars of these two forms examples of that lind of retrogressive erolution of the molars to which attention has been lately drawn in an important paper by Leche ${ }^{3}$, who attributes it to the modification of food. The Macroylossi, l'teropms scapmlatus, and the Epomophori, differing in this respect from other I'teropi, feed on juicy fruits, whose contents need not be chewed. Likewise C'hioomys marlayascariensis, the molars of which present a similar kind of retrogressire evolntion, is known to feed principally on succulent juices, especially of the sugarcane, as well as on wood-boring caterpillars. It now is rery snggestive that sciurns insimms, according to MLiiller and Schlegel ${ }^{i}$, is especially fond of juicy and aromatic fruits of different species

[^3]of Elettaria (E. mollis, spreciose, and coccinea), as well as of some kinds of beetles and all sorts of caterpillars. A very similar food will in all likelihood hereafter prove to be preferred by Sc. loseci ${ }^{1}$.

The molars of the semi-hypsodont Pteromys (Plates VIII, and IX. fig. 19) bear the same relation to those of Sciuropterus as the molars of the Serns-type do to those of the Sciurus-mlytaris-type. In both, the valleys appear deepened and narrowed, but in Pteromys the narrowing is effected by the rertical increase of the wrinkles referred to in Sciuroperus molars (Plates VIII. and IX. figs. 20, 21, Plate 1X. figs. 2,5),-the result of which is that the cup of an inferior molar is filled up br these ramifications of the enamel, and the crown of both upper and lower molars becomes almost plane. The Eocene Ailuroems from Egerkingen (Siritzerland) ${ }^{2}$, which I consider to be a Rodent, is in this respect somewhat intermediate between Pteromys and Sciuropterus.

I have called the Yerus-type of molar a somewhat specialized one, and am justified in doing so, as the teeth presenting it are no more brachydont-brachydontism being the primitive condition. The brachydont crown of Scimronorpha is at the same time bunodont; whereas the semi-hypsodont teeth are more or less, and the hypsodont teeth are completely, lophodont.

Another small gronp of Ethiopian Squirrels-Sc. stangeri (Plates YIII. and IX. fig. 7), Sc. eluii, and Sc. aulbimii (Plates TIII, and IX. fig. 8)-deserves the name of brachydont Yeri, as it shows from what form of brachydont molar the Terus-type may have originated. Other characters of this same small group to be mentioned presently likewise point towards the Hystricomorpha, notwithstanding their perfect brachydontism.

In concluding these general remarks on the form of the Scimrine molar, I repeat what has already been stated, viz, that in perfectly brachydont Sciurine teeth the cusps tend towards a longitudinal arrangement-two marginal series in the lower molars: two marginal and one or more, more or less complete, intermediate series in the upper molars. This circunstance is of importance, as pointing towards the primitive arrangement of the molar cusps, and we shall have to revert to it when treating of the original type of molar.

11I. Remarlis on the Classification of the Sciuride.

We have now to consider some of the bearings of the foregoing remarks on Sciurine molars on Classification.

Classification was not my original purpose; but some of the results arrived at seem to me of some interest in this respect too, so that I think they may be worth mentioning. Nor do I see why

[^4]systematic Zoology should not take into consideration, more than has been the case hitherto, the characters of the skull and dentition of Sciuromorpha, which characters have been of such excellent service for Myomorpha.

My arrangement of the Scinvida (see the table, p. 189) contains three subfamilies :-

1. Sciurinu, including the genera of the subfamily Sciurince of anthors (with the exception of the Flying-Squirrels and some pigmy forms), as well as the members of the subfamily Srctom!ince (C'ynom!s, Arctomys, Spermophilas).
2. I'teromyince, including all the Flying-Squirrels (S'cinopterus, Pteromys, E'upetren'us).
3. Nemmosciurince, the Oriental Pigmy Squirrels Sc. pacilis, S. Miill., Sc. melanotis, Müll. \& Schleg., Sc. concinnus, Thos. ${ }^{1}$, Sc. unhetpheadi, Thos. ${ }^{2}$, as well as the Ethiopian Pigmy Squirrel, Sc. mimutus, Du Chaillu.

I shall say a few words on the Pteromyince when dealing with the fossil forms.

As to my subfamily Scindince, the inclusion of the Aretomyince in the subfamily Sciurince, which appears at first sight to be a radical change, will, I am sure, meet with the least opposition. The close relationships of Spermophitus to Temias and Sciurus are generally recognized; and my scheme is further justified by the consideration that several North-American species of the heterogeneous genus Spermophilus show in their skull and dentition a striking analogy with Teres, a circumstance which has been generally overlooked. Besides, the dentition of the Arctomyme is so decidedly Sciurine that [do not see why we should any longer keep Arctomys and S'permophitus artificially separated from Yerus and Sciurus, for no other reason than conrenience.

As to the minor divisions, it results from the preceding remarks on the dentition of Sciurino that the Ethiopian Serus occupies, with its three species, a much less isolated position than has hitherto been admitted, inasmuch as numerous species of Ethiopian Squirrels, as well as some Oriental forms, included in the genus Sciurus, have close relations to Terus in characters, which at the same time approach it to the Hystricomorpha. 'The characters of' the skull of Serus and its congeners point in the same direction, and consist, to express it briefly, in the elongate form of the cranium in greneral and the frontals particularly, conpled with the shortening of the postorbital processes; whereas the remuant of Sciurime are, on the contrary, characteristic for their broad frontals and the long postorbital processes. Moreorer, a small group of Ethiopian Squirrels, related to Serns (Sc. strmyeri, Sic. eliie, Sic.

[^5](aubimii), presents a closer approximation towards the hystricine type in the relatively large infraorbital opening ${ }^{1}$.

Again, another group of Ethiopian Squirrels (Sc. rufolmachiatus, Sc. ammulatus, Sc. punctatus, S'c. shirensis), belonging to the Sciurus-vulyanis-type by the characters of their dentition, show in the conformation of their skull some approach towards Xeres: whilst, on the other hand, a few species, which from the form of their skull camot be separated from the Terus-group, tend by the characters of their molars somewhat towards the Sciurus-melyaristype, as, for example, amongst Oriental Siquirrels the Sc. tristrictus and Sco palmarem.

If we try to express ly a systematic arrangement these various relations, two courses appear open to us: either to unite Xerus with Sciurus, or to create separate genera for those groups of species which depart from S'ciurus in approaching Jerus. However, neither of these two suggestions seems satisfactory. By uniting Terus with Sciurus this last genus would become still more heterogeneous than it is already-Terus, sensu stricto, having besides near relationships with Spermophitus. By splitting up Sciurus in varions genera, the relationships of these last to Xerus would not be seen in their true light. So that it appeared to me more rational to adopt a middle course, viz., to detach from Sciurus a certain number of species, which in their skull and dentition show Xeroine affinities, and to unite them with Terus, which last genus would thus become composed of five subgenera (see the table on the opposite page).

The genns S'riurus, distinguished from .'erus by characters of the skull as well as of the dentition, is divided into three subgenera, each of which is characterized by cranial and dental peculiarities.

Subgen. a, Eusciurres, contains the Oriental Giant Squirrels, which by all author' on the subject, with the exception of Anderson, have been recognized to be a distinct group; in 1842 P. Gervais ${ }^{2}$ pointed out the characters of the skull. As I have already stated more than once, the molars are perfectly brachydont, with delicate rugosities of the enamel-covering. Only one superior premolar.

In the subgenus l. Sciurus we have four divisions:-(a) A small group of Ethiopian Squirrels, characterized by the absence of the minute superior premolar, and, as a compensation, a tery elongate posterior premolar. On the rest, the dentition is similar to that of Sciurus mitgoris. I have before described the slight differences in the molar pattern of division β, containing the majority of so-called

[^6]

 Sc. cestuans, L. ; Sc. deppei, Pet. ; Sc. aberti, Woodh., sc.
c. Subgen. Tamias.

 ferruyineus, F. Cuv. ; Sc. lokroides, Hodgs.; Sc. prevosti, Desm.

 :3. Genus Sciurus.
a. Subgen. Eoscem
Sc. indicus, Er
macrurus. P
 I. hosei, Thos.

-sauniosouiliny snuon 'T

" middle-sized" Oriental Squirrels. Division γ, with Sc. vulyuris and Sc. syriucus, distinguished from each other by slight characters of the first superior premolar $\left(\mathrm{p}^{1}\right)$. Division δ contains most of the American Squirrels.

The third subgenus c. is 'I'amias, which I cannot separate from the genus Sciurus.

The skull of the Pigmy Squirrels is very remarkable, a fact to which attention has been drawn by Müller and Schlegel, as well as by O. Thomas. The anterior zygomatic root is a perfectly vertical narrow septum, and is placed so much backwards (above the second molar) that the facial part of the crimium appears very elongate, whilst the frontal region is broader relatively than in any other Sciuromorpha. The orbita is formed by an almost circular bony ring.

The dentition, of which I give the figures (Plate X. fig. 10, Plate XI. figs. 6,7) is unique amongst Sciuromorpla, and can, as I have said before, be compared only with that of some Myowi. In the upper jaw there are either one or two premolars, and one in the lower jaw. The posterior upper premolar (p^{1}) and the lower premolar $\left(p_{1}\right)$ are of minute size as compared to the homologous teeth in other Sciuromorpha, sometimes scarcely one-third of the size of the molars. This is mother feature they have in common with certain of the Myodi. The pattern of the crown differs from that found in the Sciuromorpha generally, in presenting only three complete transrerse crests in the upper molars instead of four, and three in the lower molars. The third crest, counting from front to back, of Sciuromorphons molars is rery reduced in these pigmy Squirrels, sometimes scarcely more than a minute cusp. A further peculiarity of these molars is the large development of the anterior transverse valley of both superior and inferior molars, as compared to the usual Sciuromorphous type, sometimes almost equalling that of the posterior valley. This last, owing to the partial suppression of the third crest (Riitimeyer's Nachjoch), occupies the area of the median as well as that of the posterior transverse valley in the tooth of Seiuromorpha.

These characters of the teeth and the skull of the Pigmy Squirrels sufficiently justify the creation of a separate subfamily for them.

1V. Description of the Fossil Species.

The remains of two species of Squirrels are representatives, the one (1) Sciurus spermophilinus, Dep. ${ }^{1}$, of the Sciares vulgaris-type, the other (2) Xerus grieversis, u. sp., of the Xerus-type, which both types have been so fully discussed before, that I need scarcely enter into further details.

[^7]Sc. spermophitinus is represented by a fragment of the left maxilla (Plate X. fig. 4), carrying the posterior premolar and the two auterior molars, and by several mandibular rami (Plate X . figs. 6-9). A minute alreolus for p_{2} is visible in front of the posterior upper premolar. The inferior molars show the cup- or basin-shaped conformation, the cusps being arranged laterally.

Depéret is of opinion that the molars of Sc. spermophitinus differ from Sc. vulyderis only in small particulars. I find more resemblance to some Oriental members of the subgenus Sciurus; the antero-internal cusp of the lower molars being extremely elevated, whilst the postero-internal cusp is almost suppressed (Plate X. fig. 9). We meet with eactly the same pattern in the Oriental Sc. atrodorseltis, Gr., Sc. rosenberyi, Jent., Sc. caniceps, Gr., Sc. brookei, Thos., and others. The third lower molar is more elongate than in Sc. vulyaris; this, too, is a character of the Oriental group of Syuirrels mentioned. Besides, both upper and lower incisurs are rertically striated by ridges (Plate X. fig. 5). Amongst recent Sciurince, only Rhithrosciurus, whose molars, however, are very different from those of the fossil, presents this charracter. It occurs also on lower incisors of some species of S'ciuroiles from Cailux, in the British Museum. As the same striation of incisors is found in the Tillodont Calemodon of the Lower Americiu ${ }^{1}$ and Swiss 2 Eocene, it may prove to be an inherited character.

Length of m_{2}, m_{1}, p_{1} sup., 6 millim.; length of m_{3}, m_{2}, m_{1}, p. inf., $7 \cdot 5$ millim.
Xerus grivensis, in. sp. (Plate X. figs. 2, 3).-A left mandibular l:umus, showing the three molars and the alveolus of the premolar. Length of the three molars 6 millim. Incisor without rertical ridges. The molars present a more adranced stage of lophodontism than those of Sc. spermophilinus, not only the anterior cusps miting transversely, but the postero-external and postero-internal cusp-the latter more fully developed than in Sc. spermophilius-showing the same tendency. So that we have three, instead of two, transverse valleys, the median and posterior valley being incompletely divided. I could not better characterize the molirs of this fossil than by calling them a minute and somewhat less semi-hypsodont form of S. berdmorei, Bly., from Dartaban, Tenasserim, Cambodja, and Cochin-China.
Scieropterus allenensis, n. sp.-The third fossil, a left ramus of the lower jaw (Plate X. fig. 1, Plate XI. figs. 3-5), is strikingly similar in the character of the molars and the ramus to some of the larger species of S'ituropterts, and especially to Ptoromys tephromelus, Guinth. ${ }^{3}$ (Plate XI. figs. 1, 2), and P'ter. phetomelus, Giiuth.,

[^8]from the Malay region and Burneo, which are both, from the conformation of their molars, not to be distinguished from Sciuropteri. I present an enlarged sketch of the fossil molars, together with the first molar of Sc. tepthromeles. The few small differences shown by the comparison of the fossil with the recent species consist in a somewhat larger derelopment of the anterior rallev, and some minor details in the rugosities of the enamel. The cusps also, bordering the basin-shaped crown, are somewhat stouter in the fossil.

Length of the four grinders : $-\mathrm{m}_{3} 4, \mathrm{~m}_{2} \cdot 3 \cdot 5, \mathrm{~m}_{1} \cdot 3, \mathrm{p}_{1} 2 \cdot 5$ millim.
This is the first fossil of Sciuropterus recorded. Howerer, 1 am of opinion that Sciurus sensaniensis, Lart., from the Middle Miocene of Sansan, is but a smaller speeces of Sciuropterus, judging, at least, from an enlarged figure of a molar published by Filhol '.

Depéret has described and figured as a species of Sciuroides an iuferior molar from the Lower Pliocene of Roussillon ${ }^{2}$, whieh so much agrees with the homologous molar in some Sciuropteri (cf. Sc. colens), that I think I am right in considering the Roussillou tooth a third fossil form of Scieropterus.

But this is not all: under the name of Allomys (Meniscomys), Marsh ${ }^{3}$ and Cope have made known remains of Rodentia from the Mioeene of Oregon. Marsh considers them as "probably related to the Flying-Squirrels," adding that the teeth are somewhat like those of Ungulates.

Cope states" that "the characters of the dentition of this gemus (i. e. Aeniscomys) resemble those of the genus l'teromys."

The figures given by Cope are insufficient for close eomparison, as has alreade been pointed out by Schlosser: but it would appear from the description that one of the species, $1 /$ colcutus, approaches Sceincopterus and espeeially Sc. peetrsoni. The cromns of the inferior molars are deseribed as basin-shaped; "and although the enamel is wrinkled in a complicated manner, the wrinkles are not elerated as in the other species of the genus. Thus the inferior molars more nearly resemble those of ordinary Sciuride than do those of the other species of Meniscomys " ${ }^{6}$. In the characters mentioned, these other species would form some approach to Pteromys.

When comparing the upper teeth of his Allomys nitens with those of Ungulates, Marsh doubtless refers to the angulate conformation

[^9]of the outer cusps. A similar shape is shown by the outer cusps of S'ciuropterus pearsoni, and by those of Psoudosciurus, which I have long ago ${ }^{1}$ described at length, in drawing the attention to their various aualogies with Ungulates. These analogies are so deceiving, that the discoverer of Pseudosciurus, having but isolated teeth at his command, considered them to be from an Ungulate.

Two lower molars of a Rodent from the Phosphorites of Mouillac have been described by Schlosser under the name of Sciuroclon ${ }^{2}$. He compares them with Pteromys, and suggests that they are nearly related to, and perhaps identical with, the Oregon Meniscomys ${ }^{3}$.

In the British Museum are preserved sereral unpublished isolated molars of a minute-sized Rodent from the Oligocene Bembridge Limestone of the Isle of Wight, some of which, likewise, can ouly be approximated to Sciuropterus or a nearly related genus. Similar remarks apply to a molar from the Siriss Eocene of Egerkingen, lately published by Ruitimeyer under the name of Ailurcurs ${ }^{*}$, which, howerer, is undoubtedly a lower molar of a Rodent, and agrees most with those of the larger species of Sciuropterus, although, as stated above, it is somewhat intermediate between Pteromys and Sciuropterus. Ailuravus having relations to one of the species of Plesiactup is (Pl. gervaisii, Lem.), from the Lower Eocene of Reims ${ }^{5}$, it results that Sciuropterus-like Rodentia were very abundautly represented and widely spread during the Tertiary.

I shall hereafter point out more fully the resemblance between two recent species of Sciuropteri, Sc. horsfieldi aud Sc. petrsoni, with the two Eocene genera Sciuroides and Psendosciurus.
After this brief reference to fossils showing close analogy with recent Flying-Squirrels, it remains for me to justify my arranging these last in a distinct subfamily, the Pteromyince.

Taking the genus Pteromys in a restricted sense, it is a very homogeneous one, in its dentition as well as in the characters of the skull. The Sciuropteri, on the contrary -with which I propose to unite Pteromys tephromelus, Giinth., and P't. phecomeclas, Giinth.-show on closer examination such a variety in the shape of their molars, that, if found in a fossil condition, they would without hesitation have bern assigned to four or five genera. All of them are more or less brachydont, with the exception of Sciuropterns rolans, L. sp., which leans towards hypsodontism; all have in common an elegant sculpturing of the enamel, which gives often a creuate appearance to the cusps or crests. But, apart from this, almost every species possesses a peculiar pattern of its molars.

[^10]Similar remarks apply to the skull. As to molar-forms, I draw attention to two of the most curious in this respect, those of Sciuroptcrus horsfielli, Waterh. (Plates TIII. and IX. fig. 21), and Sciuropt. pecersoni, Gray (Plates VIII. and IX. fig. 20). The upper molars of both of these show, on the inner side, two crescents or cusps, with an intervening depression-a conformation which in recent adult Sciuromorpha is quite unique, but is met with in the Eocene genera Sciuroides, Ischyromys, Pseudosciurus. Pseudosciurus, moreover, though being somewhat more brachydont than Sciuropt. pecersoni, has in common with it the sculpturing of the enamel, as well as the pattern of the crown in general, there being six cusps in the upper molars, which in the living species show a tendency to form crests. Scieropterus horsfieldi shows other relations to Sciuroides, besides those already mentioned.

Now, how are we to account for this astonishing variety of forms, which show this group in a new and unexpected light? The brachydontism for one thing proves that the Sciuropteri are old forms, and we have seen that they made their appearance certainly in the Middle Miocene in a form which has undergone very little change up to the present day, and that nearly related forms appear in the Oligocene of France and England, and in the Miocene of Oregon. Moreorer, the nearest related fossil forms, of two of the species at least, are Eocene. In stating this, I do not pretend to say that Sciuroides and Pseudosciurus were Flying-Squirrels, but only that there is a near relationship between them and the two Sciuropteri mentioned.

Now, as to the genetic relation of the flying to the ordinary squirrels, there are three suppositions possible:-
(1) The most obvious would be to admit that the FlyingSipuirrels hare evolved from various species of non-flying Sciuromorpha. In favour of this supposition it could be said that, considering Jllying-squirrels to be more specialized, they have apparently evolved from less opecialized forms, and that the more farourable conditions in escaping their enemies might account for the survival of such forms as Sciuropt. horsfieldi and Sc. pecursoni, whose nearest relations were largely represented in the older Tertiaries. In support of a supposed independent evolution of the species of Sciuropteri from several species of Sciuri, the fact might be adduced that there exists some similarity in the dentition of an Oriental Sciuropterus (Sc. fimbriatus, Gr.) with several Oriental Sciuri (Sc. frecosti, e. g.) ; and the same might be said with regard to the Nearctic Sciuropterus rolucella, Pall. sp., as compared with several Nearctic Sciuri.
(2) A second possible supposition would be the reverse of the first. For one reason or other, a patagium might have proved disadrantageous, and the Sc. Tudsonius might be the descendant of such a form as sciuropt. volucella, as Scierus 1 recoosti and other Oriental Sciuri might have sprung from some sciuropterus fimbriatus. In favour of this supposition, the fact might be adduced that the species of Sciuropteri and Pteromys, taken together, are
inferior in number to the non-flying sciuromorpha, and have, to all appearances, greatly diminished trom Tertiary times up to the present, so that their special means of locomotion do not seen to have proved of more value in the struggle for existence to those of the non-flying.
(3) One may thirdly suppose that there is no direct connexion whaterer between the Scinropteri and recent S'ciuri or Sciurider. From Tertiary times up to the present, the species of FlyiugSquirrels have been gradually diminishing in number, their characters having proved inadaptive, whilst the species of Sciuridae have been increasing. The points of similarity in the grindingteeth of Sciurus prevosti and Scieropterns fimbrictus, on the whole, are very slight (and so are those between Sciuropterus volucellu and Sciurus hudsonius); with a little practice it is at once possible to distinguish an isolated tooth of the one from that of the other. Their skulls, moreorer, are very different.

For my part, I rather incline towards the third supposition, although admitting that the grounds on which it is based may not be conrincing. At any rate, the characters of the cranium as well as those of the dentition, though greatly varying, give on the whole a family likeness to all the lilying-Squirrels, so that 1 camot but separate them into a distinct subfamily from the Sciurina.

The Pteromys, sensu strictissimo, have probably evolved from a single Sciuropterus-like form, and Eupetaurus is apparently the more specialized descendant of some Pteromys.

The really important characters in which some Sciuri and Spermophiti approach the Sciuropteri, as in the restricted interorbital region of Culobotis, the general elongation of the froutals of varions Scimridæ, the general shape of the grindingteeth in Eosciurus, and in the stronger development of the first ridge in the upper molars of the Otospermophili, are all such that they may be considered as ancient inheritances.

Therefore we need not admit any recent comexion between the S'cinropteri and the above-mentioned members of sciuride.

Anatomical characters and palæontological evidence point in the same direction, viz. that the Sciuropteri are the little modified remuants of a very old and once widely spread group. There is not sufficient evidence for admitting that they have evolved from forms of non-flying Squirrels identical with, or very closely allied to, those actually living; their power of flying may not be a comparatively recent character. They are specialized, 110 doubt, compared to the remnant of sciuride : but the ancestral non-flying types may neither have been Sciuride nor even S'ciuromorphat.

It would be more consistent with these riews to place the llyingSquirrels in a distinct fanily; but for this it will be time enough when their recent as well as their fossil forms are hetter known than is the ease at present ${ }^{\text {. }}$.

[^11]
V. On the primitive Type of the Sciurine Molur, und of the Eutherian Molar in gencral.

In surveying the various modifications of the sciurine molartype, I refrained from entering into the question as to their relation to the prevailing theory of trituberenlism. I proceed now to this last part of my paper.

The tritubercular theory has been worked out with admirable acumen by Cope, Osborn, Schlosser, and lastly by Rütimeyer and Scott, and is so well known that 1 need not even give a summary of it. However, as I have to refer in the sequel to some less recent papers bearing on the argument, I may be allowed to mention them here as briefly as possible.

In a Memoir, which may be regarded to contain the foundations of a real comparative Odontography, Riitimeyer was led to consider as fundamental type of the Ungulate molar the zygodont form, viz. the upper molars formed by two transverse ridges, parting under right angles from an outer wall ("Aussenucund"), with a transverse valley dividing them, and two simple transverse ridges in the lower molars ${ }^{1}$.
fra Lagoit Santa, Minas Geraes, Brasilicn. Med Udsigt over Gnavernes indbyrtes Slaegtskab" (Aftryk af "E Museo Luudii," Kjobenhavn, 1887). I regret not to have known this important publication before, but shall be obliged to take it into full consideration on the first opportunity if I sueceed in orereoming the diffienltics presented by the language. Meanwhite, at the risk of not having in every instance completely grasped the author's meaning, I camot refrain here from a few obscrvations. Winge presents (p.110) the following genealugical tree of the Rodentia:-

Pseudosciurus and Sciuroides are included as a distinct subfamily under the Anomaluridæ, which last contain, moreover, besides Anomalurus (subf. Anomalurini), the Tertiary Trechomys (Trechomyini), Theridomys, Issiodoromys, Arrheomys (Theridomyini), and the recent Pedetes (Pedetini): I do not in the least deny the importance assigned to the masseter (in its relation to the mechanical aetion of the teeth), and, as a consequence, to the shape of the iufraorbital formen. Howerer, the agreement in the molars of Seimroides with those of Seiuropterus horsficldi on the one side, and of Pseudosciurus with those of Sciuropterus pearsoni (and to a lesser extent of Allomys) on the other, is such that I do not think it justified to separate so widely these fossil forms from the Pteromyince. Besides, amongst Seiurince proper, Protoxerus, my first subgenus of Xerus, still presents, in the conformation of the infraorbital foramen, some approaeh to the primitive condition.
${ }^{1}$ L. Ruitimeyer, "Beiträge zur Kenntniss der fossilen Pferde und zur vergleichenden Odontographie der Hufthiere überhaupt," Verh. d. naturf. Ges. in Bisel, iii. 1863, p. 558, gg.

Ruitimeyer starts from the assumption that the primitive type of Mammalian molars had a conical or cylindrical shape ("homoeodont" type), which simple form became complex in course of time, so that we must expect to find a more simple type of molars the more we recede in time. Ruitineyer's views were supported by the fact that, in several of the oldest deposits then known, of Tertiary Mammalia were met with abundantly the Lophiodontidx, showing the zygodont molar in its typical form.

Kowalersky ${ }^{1}$ held the same views as Riitimeyer and pointed ont, besides, that a less simply constructed form of molars is met with in the older Tertiary, especially amongst "primitive Ungulates" (e. g. "Microcharus")". But whilst he did not enter upon the possible relations between such complex sextubercular forms and the zrgodont or lophodont type (as it was called later), Cope had urged already, in 1874 , that a bmodont tooth was the ancestral form of the modern placental molar, thus tacitly admitting that the zygodont molar is a secondary, a derived form ${ }^{3}$. The varions modifications of ungulate molars were traced back by Cope to a quadritubercular type, and somewhat later he traced the sectorial type of inferior molars to a quinquetubercular or tuberculosectorial type

The discovery of the Puerco, the oldest known Tertiary Mammalian fanna of America, gare opportunity for the recognition by Cope of a still more primitive type of superior molar, the tritubercular type, the great majority of the Puerco Mammals having, according to Cope, their superior molars constructed after this type ${ }^{5}$. In the latest review of the Puerco famma it is stated that almost all the Placentalia show the tritubercular type in their superior molars, as, out of 82 Placentalia, only four are quadrituberculate. The quinquetuberculate or tuberculosectorial type of inferior molars is equally widely spread, although less generally so, 64 out of 82 Placentalia possessing it ${ }^{6}$.

The farther development of the tritnbercular theory in these last years is treated of at length in all the recent Manuals, as the whole phylogeny of the Mammalia is directly connected with the question.

Not one palæontologist who has dealt with the argument has

[^12]pronounced unfavourably on the theory since it was first brought forth, and the same is the case, so far as I am aware, with biologists in general.

The cardinal point established, to use Osborn's words, is that "the antero-external cusp in the lower molars and the antero-internal cusp in the upper molur's of the Mammatia are homologous with the reptilian cone and with each other" ${ }^{\prime \prime}$.
Trituberculism, or, as we rather ought to call it, the reptiliancone theory, is no more a theory, but has become a dogma. I am a heretic, and may say that I opposed the theory already in 1873 , viz. before it was invented ${ }^{2}$; since that time I have kept silent for various reasons.

My intention is not to deal fully with the subject on this occasion ; I wish only to present a few general remarks on what I consider to be weak points of the theory, and then to enter on more particulars so far as the Sciurine trpe of molars is concerned.

It is but fair to begin with the Puerco fauna, the stronghold of triluberculism, from the discorery of which dates the establishment of the theory. In this fauma we have 106 species of Vertebrates ${ }^{3}$, the mort numerons being the Condylarthra with 23 , and the Creodonta with 50 species . I have already stated that, according to Cope, amongst 82 Puerco Mammalia only four are quadrituberculate, all the rest being trituberculate.

Now it appears to me that the Puerco fauna, as at present known, does not give us an adequate idea of what must have been the Mammalian life of that period, the proportion of carnivorous Mammalia being far too large to be a real one. So that we meet here with exactly the same mode of argument which years before had been resorted to with regard to the zygodont type. In the oldest (then well-known) Tertiary Mammalian faunas the Lophiodontidæ, showing a relatively simple type of molar, were richly represented; hence it was concluded that this was the primitive type of the ungulate molar. Riitimever has recently strongly insisted upon the fact that the Carnivorous Mammalia of the Egerkingen fauna, the same which has yielded numerous remains of Lophiodontidæ, are exceedingly poorly represented, the remains of Ungulata being more than twenty times in excess of those of Carniroras ${ }^{5}$. In the Puerco, on the other hand, where we have an analogy to the Fgerkingen ${ }^{6}$ fana in regard to primitive types,

[^13]the proportion is reversed. The Creodonta, with, on the whole, a simple type of molars, prevailing in the Puerco fanna, this fact has been considered as conclusive for Cope's theory, that the Mammalian molar is derived from a tritubercular type.

Secondly, I canuot acknowledge that many of the Puerco molars said to be trituberculate, are really such; several species of Miocloenus, for example, showing a rather complex trpe.

Now, considering the fact that we meet amongst the so-called trituberculate types with molars which really are septem-, octo-, and novem-tuberenlate, it would have been more correct to speak of a triangular type, this shape of the outline being the only thing the molars in questiou have generally in common. But they are not all even triangular forms, as those presented by "Conoryctes" ditrigomus ${ }^{1}$, or Periptichus rhabdodon ${ }^{2}$, show on either side of the principal inner cusp two secondary cusps, and Rütimeyer has recorded similar types from Egerkingen.

Moreover, Cope is not consistent with his own theory when he expounds his riews as to the mutual relations of Creodonta ${ }^{3}$. The genus Mioclemus, from which all the other Creodonta are said to be derired, possesses the most complex structure of molar of them all; whilst Mesony, whose upper molars present a simple tritubercular type, is placed at the end of a series instead of the beginning, as the theory would require.

I further find inconsistencies in his diagram showing "the facts and hypotheses as to the phylogeny of the Mammalia" ${ }^{4}$. Here the Creodonta and Camivora, as well as all the other placental Mammalia, with the exception of the Cetacea, are traced back by Cope to the Coudylarthra. The latter, together with the Marsupialin, are derived from the Monotremata. This derivation implies that in the opinion of Prof. Cope the Monotrematous teeth must have been constructed on a trituberculate or a still more simple plan; and it may be remembered that when the first figures of worn teeth of Ormithorhynchus were published, they were proclaimed to support the tritubercular theory. But they are now known to be multituberculate; so I suppose that this being the case, the argument will probably be considered of no ralue, the Ormithorhyuchus being an aberrant Protothere. But still the fact remains, and we must deal with it, that the only prototherian teeth known to this day are multituberculate to the extreme.

If I am not mistaken, the above views of Cope as to the mutual relations of the different orders of Mammals,-views which are in opposition with trituberculism,-show that their author is on his way, unconsciously perhap.s for the present, to become a partisan of the multitubercular origin of Mammalian teeth, so that support
${ }^{1}$ E. D. Cope, 'The Vertebratu of the Tertiary Formations of the West.-I.,' 1883, pl. xxiv. d. figs. 2, 4.
${ }^{2}$ Ih. pl. lvii. fig. 1 a.
${ }^{3}$ 'Synopsis Puerco Fanna,' p. 309.
${ }^{6}$ E. D. Cope, "On the Byolution of the Vertebrates, progressive and retrogressive," Amer. Naturalist, February, March, April, 188\% (printed April 1:3, 1884), p. 247.
seems to be coming to me from the very side from which it was least expected.

Schlosser in his turn has, in his elaborate and valuable Monographs ${ }^{2}$, taken trituberculism as his guide for tracing the phylogeny of rarious orders of Mammalia. He states his ground to be as follows:-"We have but to start from the perfectly recognized primitive type and to trace the modifications which it has undergone ${ }^{\prime \prime}$. This perfectly recognized primitive type is, according to Schlosser, the tritubercular type of upper molars, and the tuber-culo-sectorial type of lower molars. Accordingly, in the diagram placed by him at the head of the Monograph of Carnisora ${ }^{3}$, this form of molar type is attributed to the supposed first true Carnivore.

In accordance with the theory, Schlosser considers Mesony, or Sarcothraustes to be the primitive type of Carnivora ${ }^{1}$. With the same inexorable logic all Ungulates are derived from carnivorous Mammalia; the Condylarthra being considered as intermediate between the Ungulata and Creodontas ${ }^{\text {s }}$.

1 have not to deal with Carnivora on this occasion, so that I will only mention incidentally that, in my eyes, amongst recent Carnivora, the Subursi (and, so far as the form of molars is concerned, Ailurus) approach nearest to the primitive carnivorous Mammalia, whilst some of the Arctocyonidx are the most primitive of Creodonta.

Further objections may be made when Schlosser considers with Cope a rather complicated form of inferior molar-the tuberculosectorial type-to be a primitive form, and when it is assumed that, whist the upper molars become further modified by addition, the lower molars from quinquetubercular become quadritubercular in progress of time, by the loss of an anterior cusp, the paraconid. The tuberculosectorial type is, in its turn, derived from a simpler

[^14]form by the addition of the so-called heel or taton to the original trigon.

The name of heel or talon is borrowed from the teeth of Carnivora, where this part, as the name implies, generally appears in a reduced form compared with the rest of the tooth. In other orders the so-called talon is, as a rule, a well-developed part of the inferior molar, so that it seems a priori highly improbable to consider as a later development that part which, in the majority of Mammalia, constitutes the whole posterior moiety of the lower molars. What we at present know of the oldest forms of Perissodactyla, Condylarthra, Rodentia, and even of some forms of Creodonta, as revealed especially by the Cernaysian fanna of Reims ${ }^{1}$, does not in the least justify a similar assumption. On the contrary, the "talon," far from showing a tendency to disappear, is in several of these archaic Eutheric very prominent, and even more distinctly dereloped than in any later form, not only in longitudinal extension, but partly even in the elevation of the cusps, as compared with those of the anterior moiety.

The question of the heel leads us to an objection made by Fleischmann, who on the whole accepts the tritubercular theory, but maintains that the ensps of upper molars are not directly homologous to those of the lower molars; or, in other words, that not only does the internal side of upper molars correspond to the external side of lower molars, as admitted by Cope and Osborn, but that, besides, the anterior part of upper corresponds to the posterior part of lower molars ${ }^{2}$.

In reply to Fleischmann, Osborn states that "this objection would be fatal to a uniform system of nomenclature for the upper and lower cusps if it could be sustained," but that it is disproved by a comprehensive survey of the Mesozoic trituberculates, especially of the Amblotheridie and Spalacotheriida ${ }^{3}$. Neither Osborn nor Fleischmann seem to be aware that, if the latter is right, his objection will be fatal not only to the homology of upper and lower cusps, but also to the theory, for the primitive trigon which includes the protoconid, the supposed homologne of the reptilian cone, would in that case be found to be formed for the greater part by the very heel which the theory considens to be a late addition.

There can be no doubt as to the correctness of Fleischmann's statement, which is easy to rerify. A left upper anterior milktooth of Didelphiys, for instance, is at first sight very difficult to distinguish from one of the right lower series. Fren in such specialized molars as those of modern Ruminants, in holding side by side a right upper and a left lower molar, or vice verse, what appear to be the mutual homologies are to be trawd out even to

[^15]very small details．The only inference I wish for the present＇to draw from this fact and its consequences is，that Prof．Fleischmann， too，is on lis way to become an opponent of trituberculism．

It would appear that the Allotheria，the Multituberculata кル＇＇є彑oxiv，ought to have been a stumbling－block for the theory． But this is not the case；they have been simply pushed aside on account of being an aberrant order．Nevertheless，I shall refer to them later on．

The dentition of Rodentia has as jet not much been dealt with in relation to the tritubercular theory．Scott was the first to touch upon the question，when describing the Plesiarctomys sciu－ poides，S．\＆O．，from the Uinta formation ${ }^{2}$ ，considered by him to be ＂one of the oldest，if not the very oldest known form of rodent．＂ Owing to the importance which for this reason is attributed to the fossil，I must dwell upon the subject at some length．Scott has shown to his own satisfaction and to that of others that the superior molars of Plesiarctomys scimoides＂are plainlr of the tritu－ bercular pattern，＂and that＂the inferior molars show the anterior triangle of three cusps with a talon behind，or what Cope has termed the tuberculo－sectorial molar．＂It might be questioned at once ＂hether this specimen，the teeth of which are much worn according to the author＇s own assertion ${ }^{3}$ and according to what appears from the diagram＇and the figures ${ }^{5}$ ，is a proper object from which to draw such important inferences．I fail to see in its molars anything alse than the usnal Sciuromorphine type，which I agree with Scott in considering as a rery old one．I have myself pointed this out twenty years ago in some fossils（Sciurus spectabilis）from the Eocene of Egerkingen ${ }^{6}$ ，which are rather older than the Tinta formation．The Uinta beds are considered by Zittel ${ }^{7}$ to be Lower Oliogorene，whilst the Bohner\％of Egerkingen has important rela－ tion－with the oldest Eocene of Europe（Reims）and America （Puereo）${ }^{4}$ ．On the other hand，this type is still in existence，and widely spread among living Sciuromorpha．

I think that Scott is mistaken in what he considers to be the homologies，in the lower molars of Plesiurctom！！s，of the anterior triangle of Ungulates，Creodonts，and Lemuroids．This anterior triangle is formed，as clearly shown by unworn molars of most of the Sicinromorpha，by the antero－extemal and antero－intemal cusp（the frotocomid and metacomid according to Osborn＇s 110－

[^16]menclature $)^{1}$ more or less transversely united, together with Osborn's paracomit ${ }^{2}$, and include between them what I have called the anterior transerse valley. Owing to the much-worn condition and partly too, perhaps, to the feeble development of this anterior part-as found in some recent Sciuri and in A.ctomys-the anterior valley has vanished in the fossil molars, though I think that some traces of it are still visible in the first and third molar of Scott's figures ${ }^{3}$, so that, in order to find out the typical triangle, Scott has encroached on what trituberculism declares to be a late addition to the inferior molars, for he considers, as it were, the postero-internal ensp, Osborn's entoconitl, of the "heel" to be the postero-intermal part of the typical triangle. What he calls the talon behind, is but the median cusp (hypocomutid) of Osborn's talon. This hypoconulid is in fact the real "talon," viz. that part which is so generally well developed on the posterior side of thitd lower molars, but which in many Sciuromorpha can be distinctly made out in the anterior molars too, as well as in milk-teeth of Leprus and Myoluerus, and both in milli-teeth and permanent molars of Lagoclus and Titanom!.s ${ }^{\text {. }}$.

The conclusions to be drawn from the foregoing analysis are, 1 am glad to state, the very same at which Scott las arrived, as they tend to show, eveu more ummistakably, "that the Rodents are to be derived from the same generalized group of primitive placental Mammals, the Bunotheria, to which we refer the origin of the Ungulates, C'reodonts, and Lemuroids ". In respect to what Scott considers plainly to be "the tritubercular pattern" of superior molars, it cannot be denied that there appear three principal cusps, two external and one internal one, in the upper molars of Plesiurctomys sciuroiles; but there are other parts to be seen, even in these muchworn molars, and I have already pointed out that it is dangerous to draw inferences from wom teeth.

Very similar remarks apply to two papers by Schlosser ${ }^{6}$, in which this author endearours to refer the molars of Rodentia to trituberculism. I therefore refrain from discussing them at length, and I wish only to remark upon the second of the papers quoted. Schlosser asscrts in the most positive manner, what at first sight appears to be a startling fact, that Plesiudupis and Proloult, 1 is, from the Lower Eocene of Reims, are Rodentia. Plesiculupis had previously been

[^17]considered by Schlosser himself to be a Lemurid ${ }^{1}$, and Osborn ${ }^{2}$ had placed both of them amongst the Pseudolemurida. Whilst fully agreeing with Schlosser in his main conclusions, for reasons which I shall discuss elsewhere, I am again at a loss to see what trituberculism has to do with the matter ${ }^{3}$, and would put but one question : How comes it that both Protoadapis and Plesiculcapis, which are indeed the most ancient types of Rodents hitherto known, show the so-called heel of inferior molars in such a perfect condition ${ }^{4}$ in spite of trituberculism, which comsiders these parts as a late addition to the original triangle of inferior molars?

I have declared mrself opposed to the tritubercular theory, but have limited my remarks hitherto merely to criticism, though occasionally I offered some positive argument in favour of an hypothesis which is in many points the very reverse of the prerailing theory. It remains now for me to justify the position I have taken with regard to it; what I am going to say is partly a summing up of preceding remarks, and partly embraces a far wider field, and will, I have no doubt, meet with some opposition.

No better starting-point could be chosen than the "Sciurides," amongst which we meet with the most primitive form of molars of this low order of Mammalia.

The adherents of trituberculism assert that they have proved the Mammalian molar to be traced back to a more and more simple form. I have tried to show that they have failed to do so, and in my turn assert that the molar of Placentalia can be traced to a polybunous form, and that the real tritubercular pattern is a more specialized secondary stage. So that, as a matter of course, the cardinal point to be established is to show, that the more complex forms, which in the Lower Eocene as well as in the recent period are found side by side with the simpler forms, trituberculate or otherwise, are indeed the primitive, the more generalized type.

To prove my assertion, I start from five assumptions:-

1. Brachy!lont! is the more primitive, the more generalizal condtion of molar form, and so is
2. Bunorlonty, as opposerl to Lophodonty (or Ziygodont!, which is the same thing).
:3. The more brachydont a molar is, the more multituberculer it is, or, let us suy, pmlymous.
3. The transformation, viz., the reduction amd simplification, pro-

[^18]ceeds from the inner sile outwards in superior, and from the outer silde inucards in inferior molars.
5. The now prevalent transerse arranyement of cusps or lobes is not the primitive condition, but a specialized pattern of the crown.

The first two points need no discussion, as 110 biologist of the present day denies them. I thirdly maintain that the more brachydont a motar is, the more polybunous it is; so that change, which in our ease means reduction, simplification, of the molar-crown elements, goes hand in hand with the gradual progress from brachydouty towards bypsodonty.

In the general survey of Sciurine teeth, it hats already been shown that the more the molars are brachydont, the more they are polybunous, so that by this statement alone polybuny is proved to be the primitive condition.

If we examine the outer parts of upper and the inner parts of lower molars, we see that they present much less rariation in Brachydontia as compared to Hypsodontia, and in the various stages of Hypsodontia compared together, than does the rest of the crown, especially the imer side in upper and the outer side in lower molars. It therefore at once strikes us, that the outer side of upper and the inner side of lower molars (viz., those parts which, when the jaws are at rest, are protruding over the corresponding parts of the opposite jaw) hatre undergone the least modifications, that they are the more stable elements of molars. These same sides being generally more complex than the inner side above and the outer below, we may inter from it that the complex condition is the primary oue, and that the reduced, simplified state of the imer side above and the outer side below is a specialized condition, the beginning of which we see already in molars of Cretuceous MAmmuliu and in those of Ornithorhynchus.

The extreme of this specialized condition is what has been called trituberculism, and considered to be a primitive pattern of Eutherian molars. It is not more primitive in Ungulata, Condylarthra, Creodonta, and Lemuroidea tban in Sciurince, the species of which, when there is only one cusp on the inner side of upper molars, present an approach to trituberculism.

Now, what is the meaning of this reduction on the inner side of superior, and the outer side of inferior molars?

We have seen that in perfectly braehydont teeth the outer and inner sides of the molars present the least difference from each other in longitudinal extension, at well as in the number of their cusps; and that the superior molar becomes shortened on its inuer side, as well as the inferior on its outer side, by the excessive development of some cusps (generally either one or three, rarely two, in S'ciurinue) at the expense of others, which are present in such perfectly brachydont teeth as those of Eiosciuri or lRhithrosciurus. The meaning of this process of reduction becomes obvious, when we consider that the iuternal cusps of superior,
and the external cusps of inferior, molars have to fit into the hollows or ralleys of the opposing teeth. When there is only one cusp exclusively or prominently developed on the imner side of a superior molar, as in the so-called tritubercular, or at a lesser degree in the trigonodont type, this single cusp fits in the more or less cup-like depression of the posterior moiety of the corresponding inferior molar; in other words, the protoone,-viz., the oldest element of upper molars, according to the tritubercular theory-fits in what the theorists consider to be the most modern part of inferior molars. And, vice versu, the postero-eaternal cusp of inferior molars, that is the hypoconicl of the "heel," has to fit in the median valley of superior molars, formed essentially by the three cusps of what trituberculism considers to be the primitive trigon of apper molars.

The special development of two imer cusps in superior molars has been shown to be so very rare an occurrence in sciurince, that up to the present day it was known only in some fossil forms (Sciuroides, Isececloseiurus, Ischyromys), whereas it is the predominant feature amongst Ungulata. To these two imier cusps correspond two hollows or valleys of the inferior tooth. The relative development of the anterior valley, formed by the so-called primitive trigon of inferior molars, corresponds to that of the postero-internal cusp of superior molars,- the hempocone, a later addition according to the tritubercular theory: when the hypocone is suppressed, as in the pure tritubercular type, or feebly developed, as in the trigonodont type, the anterior valley in the lower molars is atrophied or insignificunt. It is well developed, to receive the hypocone as a pestle, when this last has the same or almost the same size as the protocone.

Fourthly, we are able to state that the transformation, viz. the reduction inel simplificution, proceets from the inner side outzourls in superior, anel from the outer sule invarls in inferior molurs. Here I have to repeat what 1 said with regard to semi-hypsodont teeth, viz,, that the vertical elevation of the crown, the first stage towards lypsodnnty, always has its starting-point from the inner side of upper molars. A farther stage of semi-lypsodontism, as presented by the rooted molars of Miocene Lagomor, hat (Lagodus), shows how hypsodontism gradually extends towards the outer side, accompanied by a gradual and essential change of the pattern of the crown. In the same way the inner root, which ultimately will remain open, gradually extends outwards, increasing in size, and receives a coating of enamel. This process is so slow, that for a long time the outer side retains a brachydont as well as a complex conformation.

The fifth point adranced was stated as follows:-The now prevalent transverse arrangement of eusps or lobes is not the primitive coultition, but as specializel puttern of the crown. What, then, was the primitive condition? The primitive geueralized pattern was the exact reverse, viz., the arrangement of cusps in longitudinal series, separated by longitudinal grooves or valleys. This is, indeed,
a cardinal point and will, when once generally recognized, appear to be a simple truth.

Bunodonty, as opposed to lophodonty, is the first step from a transverse arrangement towards the longitudinal one, and is not, always to be distinguished at once from the second step 1 am speaking of, though this last is often characterized by a sort of asymmetry, or confusion, in a way, as is usually the case in transitional stages.

First, as to Sciurince. As has already been said, transyerse crests are to be found only in semi-hypsodont types, many of which tend towards the Hystricomorpha, which for their lack of brachydont molars at once show themselves to be more specialized forms. With the exception of Myoxine types-and this exception is only an apparent oue-we may say that the more the molars tend towards brachydonty, the more the crests are broken up into cusps. Of these cusps there are generally five on the outer side of upper molars, two or three of which have been prominently developed. In the middle two intermediate, and on the inner side in the same mamer as on the other side, originally a longitudinal series of cusps were developed, which very soon, viz., when the tooth ceases to be perfectly brachydont (as well as in somewhat worn semihypsodont or hypsodont teeth), are reduced in number and tend to become coalesced, a middle cusp, appearing the most developed. This middle cusp seems to be for the greater part the remnant of a fifth series which have become partially atrophied, in order to give place for the median transverse valley; and it is in consequence of the formation of this valley that the cusps appear arranged in transverse series, even before being counected as ridges or crests.

In superior and inferior molars, the most brachydont members of the family are at the same time those which show a tendency towards a longitudinal alignment of their cusps. The difference between superior and inferior molars consisting in the presence in upper molars of intermediate cusps, in more specialized, viz. less brachydout forms, generally reduced to two, as before stated, but which, as shown by the most brachydont forms, are the remnants of one or more longitudinal series of cusps or tubercles, intermediate between the outer and the inner series.

The cup- or basin-like shape of inferior Sciuromorphine molars is but a slight specialization of a primitive type, a disposition of the cusps on the outer and inner margin, with an intervening longitudinal depression. The slight specialization consists in the begiming of a transverse arrangement. In the Bornean Rhithrosciurus (Plate LX. fig. 2), the whole of the very brachydont inferior molars consists mainly of two series of marginal cusps, none specially developed, and with a spacious lougitudinal groove dividing the onter from the inner series; thas pointing significantly towards some primitive mammalim molars remote in time (Aficrolestes). And so the curious Pseulosecurus, from the Upper Eocene of Southern Germany, shows the tendency towards, or, as we rathe
should say, the traces of, a primitive arraugement of its tubercles of upper molars in three longitudinal series, there being two rows in the lower molars.

This paper does not pretend to enter into details as to other families and orders. But I think it important to state in a few words that this tendency of older forms towards a longitudinal arrangement is quite general in Rodents as well as in Creodonts, Lemuroids, and Ungulates. In Sciuridæ we have rery primitive forms still existing side by side with those more specialized, so that the transwerse arrangement does not at first sight appear to be a later transformation. The Lagomorpha are in this respect, as in others, highly instructive, the molars of the living members being rery specialized. I hope to show fully on another occasion that the structure of the molar form of Lagomorpha is to be traced back from the perfect transverse direction presented by their enamel-ridges to a pelycodoid type of molar', that means, to a molar approaching closely to those of Pelycodus, a mammal from the Lower Eocene of North America and Egerkingen in Switzerland. which has hitherto been considered to be a Lemuroid. In a somewhat lesser degree, the Lagomorphan molar tends towards Estho$n y x$, considered by Cope ${ }^{2}$ to be one of the progenitors of Rodentia.

The intermediate stages are the mworn milk-teeth, premolars and molurs, of young Lepus, the Miocene Palcolagus, Lagomys, the Pleistocene, Plocene, and Miocene Myolarus, and the Miocene Lagodus. The anterior upper and lower premolar of Lepus, the second superior and the anterior inferior premolar of Lagomys, the superior premolars and more or less all the superior molars of Myolumus, as well as the inferior anterior premolar of the latter, show, even in adult specimens, a conformation which points unmistakably towards a longitudinal arrangement of partially sharp-edged eusps-ihese cusps being three longitudinal series separated by two longitudinal groores in the upper teeth, and two series with one intermediate longitudinal groove in the lower molars. The difference between the first lower premolar and the other grinding-teeth is very striking, especially in Myolayps, for which I refer to a figure from Filhol's memoir on the Sansan fauna ${ }^{2}$.

As to other Orders, I must be satisfied to give a few instances. Amongst recent Carnivora, the Subursi, especially Aiturus, and partially the Ursidx themselves, show umistakahly the longitudinal arrangement of their molar cusps. In the same direction the milk-teeth of several Orders point significantly, eren those of modern Raminiuts.

In the Lower Eocene many molars of various Orders tell the same tale as to their origin, often in a distinct manner. In favour of my view I refer to the following figures:-First, from Cope's

[^19]Tertiary Vertebrata: Calamodon ${ }^{1}$, Anisonchus ${ }^{2}$, E tocium ${ }^{3}$, Periptychus carinidens ${ }^{4}$, ditrigonus ${ }^{5}$, and rhabdodon ${ }^{6}$, Palceosyops lcevidens 7, Phenacodus ${ }^{3}$, Protogonia' ${ }^{9}$. Secondly, from Lemoine's 'Etude d'ensemble sur les dents des Mammifères des environs de Reims' ${ }^{10}$: Hycenodictis ${ }^{11}$, Dissacus ${ }^{12}$, Arctocyon ${ }^{13}$, Lophiodochœorus ${ }^{14}$, Pleuraspidotherium ${ }^{15}$, Pachymolophus maldani ${ }^{16}$, Protodichobune oweniii ${ }^{17}$. Thirdly, from Ruitimeyer's 'Eocäne Säugethierwelt von Egerkingen" ${ }^{13}$: Ailuravus ${ }^{19}$, Pelycodus helveticus ${ }^{20}$, Hyopsodus ${ }^{21}$, "Plesiadapis?" ${ }^{22}$, Acotherulum ${ }^{23}$, Cebochœrus ${ }^{24}$, Lophiodon parisiense ${ }^{25}$, Paloplotherium magnum ${ }^{26}$; the last two only so far as their milkteeth are concerned.

I wish to answer in advance an objection which will certainiy have occurred to the reader. The extreme of complication is met with in such highly specialized recent forms as Hydrochorus, Phacocherus, and Elephas, and to a lesser extent in semi-rooted molars, especially amongst Rodentia. As to the supposed more complex form of these last, it is only apparent. A worn molar of Hystrix, for instance, seems rather more complex than the rooted molar of Erethizon, but on examining unworn grinding-teeth of Hystrix, even the seemingly very complex milk-tooth only presents five more or less transverse enamel-folds.

The worn molars show a large quantity of enamel-islets, and thus have a very complex appearance; but this is not the consequence of an angmentation of enamel substance, or additional cusps, but, on the contrary, of diminution of the enamel, which diminishes in the proportion that the worn surfaces approach the roots.

Besides, I have always maintained that in progress of time a new addition may occasionally have occurred in molars ; but it would appear that in one instance at least I was mistaken. Contrary to Owen ${ }^{27}$, and all later palæontologists, with the only
${ }^{1}$ 'The Vertebrata of the Tertiary Formations of the West,' pl. xxiv. e. fig. 22.
${ }^{2}$ L. c. pl. xxiv. g. fig. 6.
${ }^{3}$ L. c. pl. xxp. e. fig. 12
${ }^{4}$ L. c. pl xxiii. d. figs. 14,15 , pl. xxiv. g. fig. 5.
${ }^{5}$ L. c. pl. xxiii. g. fig. 12, pl. xxix. d. fig. 2-4.
${ }^{6}$ L. c. pl. 1vi. f. figs. $1 a, 2 a$.
${ }^{7}$ L. c. pl. 1. fig. 3.
${ }^{8}$ L. c. lvii. b. fig. 1.
L. c. pl. xxv. e. fig. 13, pl. xxix. f. fig. 1 a, pl. 1vii. f. fig. 8.
${ }^{10}$ L. s. c.
${ }^{11}$ L. c. pl. x. fig. $4 . \quad 12$ L. c. pl. x. fig. 2.
${ }^{13}$ L. c. pl. x. figs. $14,18,20,22$, \&c. $\quad 1$ L. c. pl. xi. fig. 129.
${ }^{15}$ L. c. pl. xi. fig. 87.
${ }^{17}$ L. c. pl. xi. fig. 132.
${ }^{19}$ L. c. pl. vii. figs. 18, 19.
${ }^{18}$ L. c. pl. xi. figs. 117, 118.
L. c. pl. vil. hgs. 18,19
${ }^{24}$ J.s. s. c.
L. c. pl. viii. figs. 7, 8.
${ }^{23}$ L. c. pl. iv. figs. 22, $24 . \quad 24$ L. c. pl. iv. fig. 30.
${ }^{20}$ I. c. pl. viii. fig. 1 (partim).
${ }^{25}$ L. c. pl. i. fig. 8 (d_{3} sup.). ${ }^{26}$ L. c. pl. i. fig. 1 (d sup.).
${ }_{27}$ Rich. Owen, "Description of the Cavern of Brumiquel and its Organic Comtents. Part II. Equine remains" (Phil. Trans. vol. 159, London, 1870, p. 537).
exception of Kowalevsky, who, in the same 22nd volume of the 'Palæontographica,' had expressed an identical view, I had supposed that the two inner lobes of upper equine molars are not homologons with those of Anchitherium, but are a more modern addition to the tooth. Now outogeny, according to Klever ${ }^{1}$, suggests that Kowalevsky and myself are wrong.

As to the molars of Hydrochorus, Phacocherus, and Elephas, I leave them to ontogenists; and, if I am not mistaken, there is every appearance that we shall not have to wait very long for an answer.

It may be asked whether the pattern of molars towards which the types of almost all the Orders of Mammalia represented in the Lower Eocene tend is nowhere realized.

When I first saw the plates of Marsh's "Discovery of Cretaceons Mammalia," my impression was that the molars figured on plate ii. ${ }^{2}$ constitute one of the most important discoveries as regards the ancestry of Placentalia, inasmuch as these figures correspond to what I considered, and have been expounding just now, to approach the presumed ancestral forin of Mammalian molars. In going over the text, I found that Marsh collocates all these multitubercular teeth in the "aberrant" Order of Allotheria, and states expressly, that "Carnivores, Rodents, and Ungulates appear to be entirely wanting in this unique fama," and that "a still more surprising fact is the absence of their probable ancestors, unless, indeed, the insectivorous forms are entitled to this important position: many known facts point in this direction" ${ }^{3}$. In Part III. of "Discovery of Cretaceous Mammalia" Marsh again states: "These remains are not transitional between Mesozoic and Tertiary forms, but their affinities are with the former beyond a doubt " ${ }^{4}$.

To me it appears, from what we now know of those important fossils called Allotheria, we are not entitled to consider the whole Order as an aberrant one, though there may be, and certainly are, aberrant genera. But, on the whole, the Allotheria are not more aberrant than the Myomorpha, for instance.

The discovery of the Laramie mammals led to a controversy between their discoverer and another eminent American palæontologist; but this side of the question has not been taken into consideration, both disputauts being agreed in assuming that the multitubercular teeth in question belong to an aberrant group. This aprioristic assumption may have prejudiced the impartial investigation of facts. I cannot enter fully into the question, especially as it wonld be rash to pronounce too positively on an

[^20]examination of the figures and descriptions without having seen the originals ; but I wish to offer a few remarks.

Marsh has considered a certain number of isolated molars, possessing three longitudinal pairs of elevations, to be upper molars, although the type of Dipriodon robustus, the only molar which is undoubtedly from the upper jaw, left side, "its position being decided by a portion of the maxillary attached to $i t,{ }^{, 1}{ }^{1}$ apparently has only two longitudinal rows. This circumstance has given origin to part of Osborn's criticisms ${ }^{2}$. The type of Tripriodon ccelatus ${ }^{3}$, considered by Marsh ${ }^{4}$ as the first upper molar of the left side, as well as the type of Selenacodon fragilis ${ }^{5}$, also stated to be an upper molar (both haring three longitudinal rows of cusps), are declared by Osborn to be respectively a last lower molar of Meniscoessus, and an anterior lower molar of the same ${ }^{6}$. In a subsequent note ${ }^{7}$ Osborn writes as follows:-" It remains for the author to show specifically that the types of Selenacodon and Tripriodon are maxillary teeth," adding: "I should myself hare considered them as such but for the fact that the type of Dipriodon robustus, with two rows of tubercles, was described as a maxillary tooth, and figured with a supposed fragment of the zygomatic arch attached to the alveolar border." With regard to the upper molars, Marsh asserts, in his latest paper on the subject, that he has the means of showing what Osborn has objected to: "Although not found in position in any one specimen, so many have been secured with portions of the jaw attached, that their place in the dental series has been ascertained in several forms;" and he goes on to state, "that the upper molar teeth may be separated into two series, the first having three longitudinal rows of elerations on the crown, and the second series but two rows" ${ }^{8}$. With the caution imposed by the fact that I am judging only from the published figures, I venture to suggest that the type of Dipriodon robustus, which has the undoubted fragment of the zygomatic arch attached to the alreolar border, had originally three longitudinal rows of cusps, the middle one being worn off. Marsh himself states that its "points are somewhat worn", and this appears to me clearly shown in his figure ${ }^{10}$. If we now assume that where there are three rows of tubercles above and two below, "the cusps of the lower rows fit into the valleys of the upper teeth" ${ }^{11}$ (which in my

[^21]opinion allows only for a movement in the longitudinal direction), this mechanical action of the jaw would be followed by the wearing away first of all of the middle row of the upper molars, which rubs against the inner and outer side respectively of the outer and inner row of the opposing tooth. Compared with the types of "Tripriodon coelatus" ${ }^{1}$ and "caperatus" ${ }^{2}$, Dipriodon robustus shows its inner cusps unproportionally extending ontwards, and this would justify the supposition that the remnants of two cusps of the middle row have united with what remains of the enamel-folds of the two inner cusps, a mode of coalescence which we often see realized in worn molars. I therefore fail to find in Marsh's previous publications the proofs of the statement made by him ${ }^{3}$ that one series of upper molar teeth of Cretaceous Allotheria has but two rows; although from certain analogies-with the molars of Mus on the one side, those of Cricetodon on the other-analogies which may herealter turn out to be homologies, I am quite willing to admit, that Prof. Marsh may have in his hands the means for proving it. I cannot admit Osborn to have satisfactorily shown that in this group of Cretaceous Allotheria there are lower molars with three rows of cusps. If there were three rows of cusps with two longitudinal groores in the lower molars, we would have to urge four rows of cusps with three longitudinal grooves in the upper molars ; these have not been fortheoming up to the present date. Thus there seems to be no reason for denying Marsh's statement that "the lower molars although differing widely in the form and structure of their crowns, have only two parallel series of crescents or tubercles, an outer and inner row, with a groove or ralley between them" ${ }^{4}$.

For my present purpose it may be sufficient to point out, that both authors agree in stating that there are sereral forms with upper molars composed of three longitudinal rows of cusps with two grooves between them, to which correspond two longitudinal rows with one groove in the lower molars; but, as stated before, they have not furnished sufficient proof for their opinion that these molars belong to an aberrant Order of Maminalia. In compariug the teeth in question with those of the Muridæ and more particularly of Mus, it becomes evident that the main differences between them consist in this, that whilst in the Cretaceous molars the prevailing division is effected by longitudinal grooves, in Mus, on the contrary, the molars are deeply divided by transverse grooves: the longitudinal grooves in this genus, of which there are two in the upper, and one in the lower molars, being relatively shallow. For further particulars on this argument, as far as it relates to Muridæ, I refer the reader to a paper by Hensel on Mus orthodon from the Ossiferous Breccias

[^22]of Sardinia ${ }^{1}$, and to a subsequent paper by myself on the same subject ${ }^{2}$.

Marsh has recently made the following statement:-" One fact is becoming more and more evident, the near affinity of the early Primates, Carnivores, Ungulates, and Rodents, with each other and with the Insectivores, and more remotely with Marsupials. The key to the mystery lies concenled in the great break between the Lower Wahsatch, at the base of the Eocene as now known, and the Laramie beds of the Cretaceous. In the latter, none of the above placental mammals have been found, but in the early Eocene occur, side by side, Carnivores, Rodents, and Ungulates ..." ${ }^{3}$

I have endeavoured to show that the key to the mystery actually lies for the chief part in Prof. Marsh's own hand, and I trust that he himself will before long furnish us with the full proofs that several at least of the Cretaceous Allotheria, so called, are in the direct ancestral line of Eutheria.

And, in the meanwhile, I confidently state as follows my conclusions as to the primitive type of the Eutherian molar :-
(1) The primitive condition of the Eutherian molar is that of polybuay.
(2) The single tubercles or cusps were arranged in longitudinal series (Tinotaxis), divided by longitudinal grooves or valleys, there being generally three rows with two grooves in the upper, and two rows with one groove in the lower molars.
(3) Nicrolestes may prove to be a remote ancestor of the Eutheria.

[^23](4) From the polybunous molar, as characterized before, have been derived the other types of Placental molars, by a gradual transformation of the longitudinal arrangement of cusps into a transrerse one (Chiastotaxis), and by a prevailing development of a few cusps-a sort of Oligarchy-as well as by the fusion and suppression of others, several of which are, however, maintained with great persistency in a secondary condition.
(5) In the upper molars two outer cusps and one or two inner cusps are usually the most developed.
(6) The truly tritubercular molar is but a very specialized stage, which is often preceded, not followed, by Ruitimeyer's trigonodont type.
(7) The supposition that the so-called heel or talon of inferior molars is a later development, is an arbitrary one, disproved by facts.
(8) Which of all the cusps of the primitive polybunous molar or its derivatives may be "homologous with the reptilian cone," I do not know.

VI. EXPLANation of the plates.

Plate VIII.

Right superior molars, much maguified, of:-
Fig. 1. Sciurus (Eosciurus) indicus, Erxl. m1. (B.M. 1903a.)
2. Sc. prevosti, Desm. m_{1}. (B.M. 583i.)
3. Sc. lokroides, Horlgs. in_{1}. (B.M. 1869/4.4.3.)
4. S.c. cecretti, Thos. m_{2}. (B.M. 18929.6.8.)
5. Terus (Eoxerus) hosci, Thos. p. (B.M. 1892/7. 19.2.)
6. Jerus (Foxcrus) insignis, Fr. Cuv. m. (B.M. 68c.)
7. Xorus (Protoxcrus) stangeri, Waterh. 1m ${ }_{1}$ (B.M. 515 C.)
8. Xerus (Protoxerus) aubinnii, Gr. m. (B.M. 1875/4.30.4.)
9. Xerus (Atlantoxerus) gctu'us, Gesn. m_{2}.
10. Herus erythopus, Geoff. m_{2}. (B.M. 1888/11 .4.4.)
11. Ferus (Eoxcrus) laticaudatus, Gr. m . $^{\circ}$ (B.M1. 1885/8.1.272.)
13. Anomalurus fraseri, Waterh. p_{1}. (B.M. 555 c.)"
1.4. Anomalurus beccrofti, Fras. m_{1}. (B.M. 1066 b. 1886/1.5.1.)
15. Jerus (Paraxerus) pyrropus. Fr. Cuv. m. (B.M. 897 a.)
16. Terus (Eoxerus) berdmorei, Mly. (juv.) m. (B.M. 1878/6.17.51.)
17. " \quad, \quad (middle age). m_{1}. (B.M. 1878/6.17.33.)
18. " $"$ (old). m_{1}. (B.M. 1861/4.12.13.)
19. Pteromys leucogenys, Temm. mi. (B.M. $55\left(\mathrm{~m}_{1}\right.$ b.)
20. Sciutropterus pearsoni, Gr. $\mathrm{m}_{2^{.}}$(B.M. 1883 a.)
21. Seiuropterus horsfieldi, Waterh., type. m. (B.M. 1855/12 . 24.102.)
22. Jerus (Paraxerus) cepapi, Smith. m_{r}. (B.M. 18Ś̌/12.8.2.)
23. Jerus (Paraxerus) pyrropus aneryithrus, Thos. m ${ }_{1}$. (D.M. 1890/6. 8.2.).)
24. Xerus (Paraxcrus) isabella, Gr. m_{2}. (B.M. 1862/5.9.3.) Cameroons.

Plate IN.
Right inferior molars, mueh magnified, of :-
Fig. 1. Sciurus (Eosciuris) irdicus, Erx1. m m_{1}.
2. Rhithrosciurus macrotis, Gr. m_{1}. (B.M, 1888/8. 13.7.)
3. Sciurus lokroides, Hodgs. m_{1}.
4. Sciurus ceretti, Thos. m_{2}.

Fig. 5. Xerus (Eoxerus) hosei, Thos. p.
6. Xerus (Eoxerus) insignis, Fr. Cuv. m m_{1}.
7. Xerus (Protoxcrus) stangeri, Waterh. m_{1}.
8. Xerus (Protoxerus) аиbinnii, Gr. m_{1}.
9. Xerus (Atlantoxerus) getulus, Gesn. m_{2}.
10. Xerus erythopus, Geoff. m_{2}.
11. Xerus (Eoxerus) laticaudatus, Gr. p1.
12. ", m_{1}.
13. Anomaluris fraseri, Waterh. p_{1}.
14. Anomalurus beeerofti, Fras. m1.
15. Xerus (Paraxerus) pyrropus, Fr. Cuv. m_{1}.
16. Xerus (Eoxerus) berdmorei, Bly., juv. m_{1}.
17. \quad, \quad middle age. m_{1}.
18. ", old. m_{1}.
19. Pteromys leucogenys, Teum. m_{1}.
20. Seiuropterus pearsoni, $\mathrm{Gr} . \mathrm{m}_{2}$.
21. Sciuropterus horsfieldi, Waterh., type. m_{1}.
22. Nerus (Paraxerus) pyrropus anerythrus, Thos. m_{1}.
23. Xerus (Paraxerus) cepapi, Smith. m_{1}.
24. Xerus (Paraxerus) isabella, Gr. m_{2}.

Plate X.

Fig. 1. Seiuropterus albanensis, n. sp. (Middle Miocese of Grive-Saint-Alban.) Upper ineisor. a, from the outer, b, from the inner, c, from the anterior side.
2. Xerus (Eoxerus) grivensis, n. sp. (Middle Miocene of Grive-SaintAlban.) Left mandibular ramus, nat size.
3. $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$, of the same; magn. $\frac{\mathrm{f}}{\mathrm{f}}$.
4. Seiurus spermophilinus, Dep. $\mathrm{p}_{1}, \mathrm{~m}_{1}, \mathrm{~m}_{2}$ sup. sin. ; magn. $\frac{\mathrm{c}}{1}$.
5. ",

Anterior view of inf. incisor; magn.
6. ", Left mandibular ramus, inner view, nat. size.
$7 . \quad$, "
Left mandibular ramus, outer view, nat. size.
8. , , $\quad p_{1}, m_{1}, m_{2}, m_{3}$, inf. sin., upper view ; magn. f .
9. $\because \quad$, The same as fig. 8 , inner view ; magn. $\frac{6}{1}$.
10. Nunnosciurus concinnus, Thos. (Isabella, Basilan, Philippines), type. (B.M. 1940 a. 1876/10.4.7.) $\mathrm{d}_{1}, \mathrm{~m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$, inf. sin.; magn. $\frac{6}{}$.

Plate XI.

Fig. 1. Sciuropterus tepleromelas, Günth. Malay Peninsula. (B.M. 1885/8. 1.126.) Left mandibular ramus. Nat. size. From the inner side.
2. The same. m_{2}; magn. $\frac{3}{1}$.
3. Sciuropterus albanensis, n. sp. (Middle Miocene of Grive-Saint-Alban.) Left mandibular ramus, from the inner side; nat. size.
4. The same from the outer side; nat. size.
5. The grinding-teeth of the same, upper view ; magn. i.
6. Nannosciurus minutus, Du Chaillu. W. Africa. (B.M. 1794 a. $1861 / 7$. 29.19.) Superior griuding-teeth of the right side ($p_{1}, \mathrm{~m}_{1}, \mathrm{~m}_{2}$, m_{3}) ; magn. $\frac{1}{5}$.
7. Namosciurus concimus, Thos., juv. Superior grinding-teeth of the right side $\left(d_{1}, m_{1}, m_{2}, m_{3}\right) ;$ magn. ${ }_{i}$.
2. Observations on the Development of the Rostrum in the Cetacean Genus Mesoplodon, with Remarks on some of the Species. By Irenry O. Forbes, F.Z.S., F.R.G.S.
[Received January 17, 1803.]
(Plates XII.-XV.)
In the course of my duties as Curator of the Canterbury Museum, Christchurch, N. Z., I had occasiou to study the Cetacea in that collection. In my determination of the species of Mesoplodon I was necessarily guided by the authoritative papers on this group by Sir William Flower in the 'Transactions' of this Society, and by Sir William Turner in his Report on the Cetacea of the 'Challenger' Expedition. In his paper in volume x. of our 'Transactions,' page 42.2, Sir William Flower observes, in speaking of a form near to Mesoplodon yrayi, Haast:-" Making every allowance for individual rariation, it scareely seems possible that a rostrum such as that shown in figure 2 [i. e. Mesoplodon grayi $:$ Plate XIV. fig. 3] could change in the course of growth to that in figure 3 [i. e. Mesoplotlon haasti, Flower: Plate NII. fig. 2]. If so, most of the determinations of the fossil species based solely on the form of the rostrum are quite valueless." The same author, on an earlier page (page 420) of the same paper, remarks :"There is still much to be learned with regard to the mode of ossifieation of this eartilage. All the specimens which I have had an opportunity of examining are either so young that ossification has not commeneed, and the trough of the vomer in the rostrum proper is completely empty in the dried skull, or so old that the consolidation of the cartilage and its union with the surrounding bone has been completed." In haring lived for some time in the region in which this genus is not uncommon, I have been fortunate in laving had an opportunity of examining several immature crania in which the relations of the bones which constitute the rostrum were such as to enable me to trace some mobserved stages in their development. These observations I have thought of sufficient interest to lay before the Society, especially as they bear on some of the characters by which the varions forms of Mesoplodon and Ziyhius, both recent and fossil, have been separated from each other.

The deductions I have arrived at in this paper are based ou a personal examination and comparison of the following specimens:-
A. A very young (and, aceording to Haast, a male) skull, with its mandible,-- one of three specimens sent from the Chathan Islands to Sir Julius von Haast in 1575 . It is a co-trpe of Mesoplodon (Oulodon) trayi, Haast, deseribed in vol. ix. of the 'Transactions' of the N.Z. Institute. In this specimen the vomerine trough is quite emptr. It forms part of the collection in the Otago Museum, Dunedin, Ň.Z.

Aa. A young specimen in the Otago Museum, Dumedin, in

[^0]: ${ }^{1}$ Oldfield Thomas, "On Eupetaurus, a new form of Flying-Squirrel from Kashmir," Journ. As. Soc. Bengal, vol. 1rii. ii. no. 3, 1838, pp. 2.56-260.
 ${ }^{2} \mathrm{Ch}$. Stewart, "On a specimen of the true teeth of Ornithorhynchus," Micr. Journ. rol. xxsiii. n. s. 1891, pl. viii, i.

[^1]: ${ }^{1}$ Lemoine, "Etude d'ensemble sur les dents des Mammifires fossiles des enviroms de Reims," Bull. Soce geol. de France, 1. xix. 18!!, ple x. figs. 64-fis, 76 -78.
 ${ }^{2}$ M. Schlosser, "Ueber die systematische Stellung der Gattungen Plesiadapis, Protoadapis, I'leuraspidolherium, and Orthaspidotherium," Neu. Jahrb, fiir Mineralogie, Geologie und Palirontologie, 18!2, Lid. ii. pp. 2! $3-2.20$.
 ${ }^{3}$ Temoine, l. c. pl. x. fig. 32.
 " L. Ritimeyer, "Dio Eocanno Sinugethierwelt ron Egerkiugen," Abh. d.

[^2]: ${ }^{1}$ C. J. Forsyth Major, "Nageriberreste aus Bohnerzen Süddeutschlands und der Schweiz. Nebst Beiträgen zu einer vergleichenden Odontographie ron Tngulaten mend Unguiculaten," Palæontographica, Bd. xxii. 1873, pp. 75-130.
 ${ }^{2}$ Max Schlosser, "Die Nager des Europaiischen Tertiärs ctc.," Palæuntographica, xxxi. 188.5, pp. 19-160.
 ${ }^{3}$ H. et Alph. Milne-Edwards, "Recherches pourservir:ilMistoire Nahurel'e des Manmiferes, ete." (Paris, 1868-1874), p. 16if.

[^3]: 'Edward R. Alston, "On A/nomal"iws, its strocture and position" (Pror. Zool. Soe. 1875, p. (14).
 ${ }^{2}$ Inn. Mag. Nat. Hist, for Sept. 1892, pp. 215, 잉.
 ${ }^{3} \mathrm{~W}$. Jeche, "Stndien über die Entwieklong des Zalmsystems bei den S:̈ugethieren," Morpholog. Jahrbuch, xix. $18!\cdot 2, ~ p p, ~ i+3, ~ i t t . ~$
 ${ }^{1}$ Sal. Mïller \& Herm. Selılegel, "Over de tot heden bekende Eeklurens (Sciurus) van den Indischen Arehipel," Vrohandelingen over de Naturlijke Geschiedenia der Nederlandache oreraersche Boziltingen," Jeiden, JR:BO-44, 1. 9%.

[^4]: ${ }^{1}$ Mr. Hose informs me that Sc. hosei is a ground-squirrel like Sc. insignis; this fact goes far to strengthen the supposition that the food of both is similar.
 ${ }^{2}$ L. Rütimerer, l. c. pl. vii. figs. 18, 19.

[^5]: ${ }^{1}$ Ann. Mag. Nat. Jist., Nov. 18.88, Pp. 407, 408. Mah. Isabella, Basilam, Philippines.

 2 Ann. Mag. Nut. Jint, (5) 18R7, xx. p. 127; 1'. Z. S. 1889, p. 2:3।. Jful. Borneo.

[^6]: ${ }^{1}$ Their skull in general, and most of all that of Sc. cbii, is so strikingly Xerrs-like, with the only exception of the jugalia not being depressed, that it seems not possible to maintain them in the genus Sciorrus if deius be maintained as sueh.
 ${ }^{2}$ P. Gervais, "Description de l'Eurcuil Delessert, aecompagnée de quelques remarques sur la famille des Rongeurs seimriens," Magasin de Zoologie, 2. ir. 1842, p. 4.

[^7]: ${ }^{1}$ Ch. Depéret, "Recherches sur la succession des Fannes de Vertébrés miocènes de la Vallée dıı Rhône," Arch. du Mus. d’Hist. Nat. de Tŗon, t. v. (Lyon, 1887), pp. 108-110, pl. xiii. figs. 14, $14 a$.

 Id., "La Faune de Mammiferes miocenes de la Grive-Saint-Alban (Isére), etc.," Arch. Mus. d'Mist. Nat. de Lyon, t. v. (Lyon, 1892), pp. 48-50, pl. i. figs. 26-27.

[^8]: ${ }^{1}$ E. D. Cope, "The Vertebrata of the Tertiary Formations of the West," Book I. 1883 (Rep. Un. States Geol. Surv. of the Territ. vol. iii., Washington, 1884) pp. 188-192, pl. xxiv. c. fig. 1 b.
 ${ }^{2}$ L. Rütimeyer, " Die Eocïne Säugethierwelt von Egerkingen " (Zürich, 1891), pl. viii. figs. 25-27, p. 126.
 ${ }^{3}$ Proc. Zuol. Suc. Lond. 1873, p. 413, 1886, p. 53.

[^9]: ${ }^{1}$ H. Filhol, 'Etudes sur les Mammifères fossiles de Sansan' (Paris, 1891), pp. 36, 37, pl. i. fig. 3.
 ${ }^{2}$ Ch. Depéret, "Les animanx pliocenes de Ronssillon." Mém. Soc. Géol. de France, Paléontologie, t. i. (Paris, 1890). p. 49, pl. vii. figs. 39, $39 a$, t, iii. 1802, p. 121, pl. xii, fig. 14. (The text quoted in the last instance refers to an upper molar figured, but there is no fig. It on pl. xii.)
 "O. C. Marsh, "Notice of some nerr Vertebrate Fossils" (Amer. Journ, of sicience and Arts, rol. xiv. 1877, p. 253).
 ${ }^{1}$ E. D. Cope, "The Tertebrata of the Tertiary Formations of the West." Book I. 1883 (Rep. Un. States Geol. Surrey of the Territ. rol, iii, Washington, 1884).
 ${ }^{5}$ L. c. p. 827.
 ${ }^{8}$ L.c. p. 831.

[^10]: 1 'Nagerïberreste ans Bohnerzen Süddeutschlands und rler Schweiz,' 1.57.
 ${ }^{2}$ M. Schlosser, "Die Nager des europitischen Tertiärs," l. c. pp. 91(73)!3(75), pl. vii. (ii.) figs. 3,10 .
 ${ }^{3}$ L.c. pp. 91, 146, 154.
 "L. Rutimeyer, "Die Locine Situgelhierwelt von ligerkingen" (Zärieh, 1891), pp. $94-98$, pl. vii. figs. $18,19$.
 ${ }^{5}$ Lemoine, "Etude d'ensemble sur les dents des Mammifëres fossiles des environs de Reims," Bull. Soc. Géol. France, t. xix. 1891, pl. x. fig. 65.

 Proc. Zons, soc:--1893, Nir, Xill.
 $1: 3$

[^11]: 1 The present paper was completely finisheel when 1 first became partially aequainted with H. Winge's "Jordfundue of nulevende Gnavere (Rodentia)

[^12]: ${ }^{1}$ W. Kowalersky, "Monographie der Gattung Anthracotherium, Cuv.," Palæontographica, xxii. 1873,1874, pp. 210, 263, 264.

 2 "Je tiefer wir in die Schichten dringen, je ältere Formen wir finden, desto complicirtere Gestalten tauchen immer auf. . . . ; also kann das als cin Wink clienen, wie weit wir noch von der primitiven Form des Zahnes sind" (l. . p. 230, note 1).
 ${ }^{3}$ E. D. Cope, "On the Homologies and Origin of the Trpes of Molar Teeth of Mammalia Educabilia," Journal Academy Nat. Sciences of Philadelphia, new series, vol, viii. part 1 (Philadelphia, April 1874), pp. 71-89.
 " L.c. and E. D. Cope, "On the Trituberculate Type of Molar Tooth in the Mammalia," Pal. Bulletin, no. 97, Proc. Amer. Philos. Soc., Dec. 7, 1883 (publ. Jan. 2, 1884), p. 32 (.
 © "On the Trituberculate Type isc." l. c.
 "E. D. Cope, "Synopsis of the Vertebrate Fauna of the P'uerco Series," Truusact. American Philos, Snc., Aug. 1888, p. 299.

[^13]: ${ }^{1}$ Osborn and Wortman, "Fossil Mammals of the Wahsatch and Wind River Beds, Collection of 1891." Extr. from Bulletin of the Anerican Museum of Nat. Hist. ir. no. 1, Oct. 1892, p. 8.).
 ${ }^{2}$ Forsyth Major, "Nageriiberreste ans Bohnerzen Süddentschlands und der Schweiz. Nebst Beiträgen zu einer rergleichenden Odontographie ron Ungulaten und Unguiculaten," 1873. Palæontographica, xxii.
 ${ }^{3}$ Cope, 'Synopsis Puerco Fauna,' p. 300.
 ${ }^{2}$ Id. ib. pp. 304, 305.
 ${ }^{5}$ L. Rütimeyer, "Die Eocäne Säugethierwelt ron Egerkingen," Abhandlungen d. schweiz. paliontol, Ges. rol, xriii. 1891, p. 93.
 ${ }^{6}$ Rütimeser, ib。

[^14]: 1 M. Schlosser, "Beiträge zur Kenutniss der Stammesgeschichte der Huf thiere und Versuch einer Systematik der Paar- und Unpaarhufer," Morpholog. Jahrbuch. xii. 1887, pp. 1-136;-id. " Die Affen, Lemuren, Chiropteren, Insectiroren, Marsupialier, Creodonten und Carnivoren des europäischen Tertiärs und deren Beziehungen zu ihren lebenden und fossilen aussereuropäischen Verwandten," I.-III., Wien, 1887-1890 (Beiträge z. Paläontologie OesterreichUngarns, But. vi.-viii.) :-id. "Ueber die Beziehnngen der ausgestorbenen Säugethierfamen mod ihr Terhältniss zur Säugethierfama der Gegenwart," Biologisches Centralblat1, Bd. viii. no. 19, Dec. 1888, pp. 582-631.

 2 "Es handelt sich nur darum, von dem wohlerkamiten Grundtypus auszugehen und alle Veränderungen zu verfolgen, welcher derselbe fähig ist," Die Affen. \&e. ii, p. 9 (233).
 ${ }^{3}$ It. ib. p. 4 (228).
 4 "Wem wir won der Voranssetzung ausgehen-und hiezu sind wir auch vollauf berenhtigt- dass der Oberkiefor-Molar der Creodonta ursprünglich den Trituberculartypus in vollster Reinheit gezeigt habe, so müssen wir Mesony. ${ }^{\text {r }}$ oder Sarcothrenstes unbedingt als den Urtypus betrachten, wenigstens für jene Formen, deren obere Molaren mit rudlichen Höckern versehen sind. Es schliessen sich diese Typen mehr an die Ranbbentler als an Didelphys an," Die Affen, Lemuren, etc. i. p. 161.
 © ". . . es kann keinem Zweifel unterliegen, dass alle Hufthiere von Fleischfressern abstammen, wobei ehen die Condylarthren das Zwischenstadium repräsentiren"-M. Schlosser, Ausgestorbene Süugethierformen, l. o. p. 585.

[^15]: ${ }^{1}$ Lemoine, "Etude d'ensemble sur les dents des Mamuiferres fossiles des environs de Reims," Bull. Soce Géol. de France, iiir sírie, t. xix. 1891, pp. $263-299$, pls. x., xi
 A. Flecischmam, "Die Grundform der Backzähme bei Sängethieren mad die Homologie der einzelnen Höeker" (Silzungsher. d. k. Prenss. Akad. d. Wiss. Berlin, 1891).
 ${ }^{3}$ Osborn and Wortman, l. c. 1 pו. 84. 8.i.

[^16]: ${ }^{1}$ See also W．B．Scott，＂The Evolution of the Premolar Teeth in the Man－ mals＂（Proc，Ac．तat．Sci．Philad．1892，p．+10 ）．
 ${ }^{2}$ William 13．Scott and Hemre Fairfield Osborn，＂The Mammalia of the Cinta Formation＂（Trans．Amer．Philos．Soc．n．s．vol．wit．pt．iii．Aug．20， 1885，pp．+7 （ $6-4 \pi$ ）．
 ${ }^{3}$ L．c．p．47ヶ．
 ${ }^{1}$ P． $4 \overline{6} 6$.
 ${ }^{5}$ Pl．xi． $1 \rho, 1 d$ ．
 ${ }^{6}$ Forsyth Najor，＂Nageriiberreste ans Bohmerzen Siiddeutschlands und der Schweiz．＂
 ¡＇IIandbuch der Paläontologie，I．Paläozoologie，＇IV．Band，1892，p．fif．
 ＂L．Rütimeyer，＂Die Eocine Süugethierwelt von Egerkingen，＂Abhandl． schıriz．paläont．Ges．xviii．1891．

[^17]: ${ }^{1}$ (f., e. g., H. F. Osbom and J. L. Wortman, "Fossil Mammals of the Wahsatch and Wind River Beds." Collection of 1s 91 L. r. p. 86, figs. $1 \& 2$. \because / l,
 ${ }^{3}$ L.e. p. 47 f , and pl. xi. fig. 1 1 .
 'See also the inferior molars of "I'fesitulapis" in Lemoine, "Etude d'ensemble sur les dents des Mammiferes fossiles des environs de Reins" (Bull. Soe. Géol. de France, troix. série, t. six. Mai 18:1, ph. x. fig. (īà e), and of Decticeddapis, ibid. pl. xi. fig. $1+6 \mathrm{f}, 1+1$ ss.
 ${ }^{3}$ Scott, l.c. p. 47%.
 "Max Sehlosser, "Die Differenzirng des Silugethiergehisses" (Biol. Centrablatt, Band x. Nos. 8 \& 9, Erlangen, 1 \& 15 Jume 1890, pp. 200, 251). - H/. "Ueber die systematiseho Strellmg der Gattungen I'lesiudapis, I'rotoadupis, Pleuruspidntherium und Orthaspidotheriume" (Neues Juhrb. A. Mineralogic, Geologie und Palärntulogie. Jahrgang 1892, Band ii. pp. 29! 240.

[^18]: ${ }^{1}$ II. Schloser, " Die Affen, Lemuren, Chiropteren, Insectivoren etc. des europäischen Tertiärs, etc." Pt. I. Wien, 1887, p. 47.
 ${ }^{2}$ Hemry Fairfield Osborn, "A Review of the Cernaysian Mammalia" (Proc. Phil. Acad. Nat. Sci., May 6th, 18.10 , pp. 5.5, 5 Iti).

 3 "Dass aber dieser Typus (i. e. Trituberculartypus) auch den Ausgangspunkt für die oberen Molaren der Nager darstellt, erselhen wir daraus, dass er sich bei Sciurus sogar noch bis in die Gegenwart ziemlich rein erhalten hat." (L. c. p. 240 .)
 ${ }^{+}$Lemoine, I. c. pl. x.

[^19]: ${ }^{1}$ E. D. Cope, "The Mechanical Canses of the Development of the Hard Parts of the Mammalia" (Journal of Morphology, vol. iii. Boston, U.S.A. 1889, p. 263).

 2 'Etudes sur les Mammifères fossiles de Sansan' (Paris, 1891), pl. i. fig. 8.

[^20]: 1 Ernst Klever, "Zur Kenntniss der Morphogenese des Equidengebisses" (Morphol. Jahrb. xv. 1889, Leipzig, pls. xi.-xiii.).
 ${ }^{2}$ O. C. Marsh, "Discovery of Cretaceous Mammalia," American Journal of Science, vol. xxxviii. July 1889, plate ii.
 ${ }^{3}$ L. c. p. 83.
 4 "Discovery of Cretaceous Mammalia.-- Part III.," l. c. vol. xlii. March 1892, p. 250.

[^21]: ${ }^{1}$ Marsh, l. c. part I. p. 85, pl. ii. figs. 13-15.
 ${ }^{2}$ As stated by Osborn himself in "A Reply to Professor O. C. Marsh's 'Note on Mesozoie Mammalia.' "Reprinted with slight alterations from the 'American Naturalist,' September 1891, p. 782.
 ${ }^{3}$ Marsh, l. c. part I. pl. ii. figs. 19-21.

 - L. c. p. 86.
 ${ }_{5}$ Marsh, l. c. part I. pl. ii. figs. 22-24, p. E6.
 - H. Fairfield Osborn, " Λ Review of the Cretaccous Mammalia" (Proc. Acad. Nat. Sc. Philadelphia, 1891, p. 128).
 ${ }^{7}$ A Reply to Prolessor O. C. Marsh's Note, \&e., p. 78.
 ${ }^{8}$ Part III. p. 253.
 ${ }^{8}$ Part I. p. 85.
 ${ }^{10}$ L.r. pl. ii. figs. 13, 14.
 ${ }^{11}$ Osborn, "A Reviow of the Cretaceons Mammalia."

[^22]: ${ }^{1}$ L. c. part I. pl. ii. figs. 19, 20.
 ${ }^{2}$ L. c. part III. pl. v. fig. 2.
 ${ }^{3}$ L. c. part III. p. 253.
 ${ }^{4}$ Ib. p. 253.

[^23]: ${ }^{1}$ R. Hensel, "Beiträge zur Kenntniss fossiler Säugethiere--II. Ueberreste von Mus in der Breccie vou Cagliari," Zeitschr. d. deutsch. geolog. Gesellschaft, viii. Band, 1856, p. 281 . The conformation of the first upper molar of Mus is described by Hensel as follows:- "Seine Krone zerfällt durch zwei fast bis aut den Grund der Krone eindringende Querfurchen in drei Querleisten, von welchen die beiden ersten nach vorn convex, nach hinten zu concav erscheinen ... Zwei verhältnissmässig seichte Längsfurchen zertheilen wiederun jede Querleiste in drei mehr oder weniger dentliche Höcker . . . Das Schema für die Backenzähne des Unterkiefers (Fig. 11b) ist ein wesentlich anderes. Zwar sind auch hier die Kronen durch zwei Querfurchen in drei Querleisten getheilt. Allein statt zweier Längsfurchen findet sich nur eine, so dass jede Querleiste in zwei Höcker, die ganze Zalınkrone also in sechs dersclben zerfällt." (L.c. p. 28\%.)
 ${ }^{2}$ Forsyth Major, "Sulla conformazione dei Mnlari nel Genere Mus, e sul Mus meridimalis e Mus orthodon, Hensel," Atti Soc. Tosc. Sc. Nat. Proc. Verb. 1883, pp. 129-145.-Mr. Oldfield Thomas has lately drawn my attention to his "Description of a new Genus and Species of Rat from New Guinea," the Chiruromys forbesi (Proc. Zool. Soc., April 17, 1888, pp. 237-240, fig. 2, p. 239). In this paper it is stated that the teeth of Chiruromys "are remarkably complicated, and show a high degree of specialization, lar more than is found in any other genis at all allied to the present one," and that "this extreme specialization both of teeth and tail is especially remarkable in an animal inhabiting such a refuge for old and litile-modified forms as New Guinca." From what I have been saying, it is to be inferred, that the teeth in question, far from showing a high degree of specialization, are, on the contrary, of a very generalized typo, precisely such as we might andicipate to meet with in a refuge for old and little-modified forms.
 ${ }^{3}$ O. C. Marsh, " A new Order of extinet Eocene Mammals (Mesodactyla)," in American Soumal of Science, vol. xlii. May, 1892, p.44!,

